Spatial Commonsense Knowledge




Commonsense knowledge

Essential for many Al applications, including those in natural
language processing, visual processing, and other tasks

= For instance, in natural language understanding and
visual understanding it allows to cope with incomplete,
ambiguous and noisy information

Humans learn commonsense knowledge from life events and
experiences

Can we acquire and store commonsense knowledge so that the
machine can use it in (spatial) language understanding?



Spatial common sense in knowledge bases

- Stored in knowledge bases like
ConceptNet

- Here used in vision-language
navigation task

- Utilize informative clues obtained
from a KB for exploration
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Figure 1. At viewpoint A, our agent with commonsense turns right
into the ‘meeting room’ through perceived ‘chair’ and ‘meeting-
desk’. Then at viewpoint B, it seeks for easy-to-find related ob-
jects (e.g., ‘computer’) at first for efficient exploration, where tar-
get ‘mouse’ is usually around. C is the final viewpoint it arrived.

Chen Gao, Jinyu Chen Si Liu, Luting Wang, Qiong Zhang, and Qi Wu (2021). Room-and-object aware knowledge reasoning for remote

embodied referring expression. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 3064-3073).



Common sense in images paired with language

A girl rides a horse

From images paired with text
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* = a spatial “question-answering’ task where the question consists in a spatia
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commonsense query such as where is the “man” located with respect to a “horse

when a “man" is “feeding" the “horse"?

* The answer is a 2D “imagined” representation in contrast with a sentence /word as
typically done in question-answering tasks

* How to learn this task:
* Given a structured text input of the form (Subject, Relationship, Object) = (S,R,O)
* Predict the 2D relative spatial arrangement of two objects (output)

* Train the task in a supervised setting:

* Training set of image-text pairs, where the size and location of bounding boxes
of objects in images serve as ground truth

Guillem Collell and Marie-Francine Moens (2018). Learning representations specialized in spatial knowledge: leveraging
language and vision. Transactions of the Association for Computational Linguistics (TACL), 6, 133-144.



Simple feedforward neural network
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Common sense in images paired with language

Qualitative evaluation

person, holding, cat man following, eleghan person riding, eleghan

man, flying, kite man, holding, kite man, walking, dog

Figure 2: Predictions by the model that leverages word em- Generalization through

beddings (EMB). Top: Predictions in unseen words (under- the word embeddings
lined). Bottom: Predictions in unseen friplets.

Guillem Collell and Marie-Francine Moens (2017). Learning Visually Grounded Common Sense Spatial Knowledge for Implicit
Spatial Language. In Proceedings of the 13th International Symposium on Commonsense Reasoning, University College London. CEUR.



Common sense in images paired with language

Phase 1: learning
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FIGURE 1. General pipeline of scene understanding (human-object interaction) using our spatial template-based method. Spatial
templates are first learned (left) and used afterwards to compute their semantic match with a given (observed) test image.

Guillem Collell, Thierry Deruyttere, and Moens-Francine Moens (2021). Probing spatial cues: Canonical spatial templates for object

relationship understanding. IEEE Access 9, 134298-134318.



Sizes and metric distances between objects

= Spatial reasoning tasks often involve the estimation of the size of an object or the
metric distance between objects (e.g., when a robot or autonomous vehicles
understands instructions in natural language)

= Valid sizes and distances are usually part of commonsense knowledge that humans
possess when using language

= Sizes and distances could be estimated based on visual data

/ ’ As an Al, I'm unable to physically interact with environments, but | can provide some
§f v

insights based on the image provided. ... From the image, we can make some visual
o a5 : estimations. Judging from the image, it appears that the sofa and the table are quite
SE | ! PR s close to each other, and there may not be enough space to accommodate a 1-meter
wide robot....

Spatial-VLN
[VLM Reasoning] How wide is the path between the sofa and the table and chairs?
&Y [VLM Answer] 1.56m [Answer] Yes, the robot can go through the path between the
sofa and the table and chairs since it is wider than the robot's width.

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh, Leonidas Guibas, and Fei Xia (2024). SpatialVLM:
Endowing vision-language models with spatial reasoning capabilities. arXiv: 2401.12168. 8



Sizes and metric distances between objects

= Given the importance of the topic, we witness a rise in visual question answering
datasets that contain quantitative spatial question such as:

"How much to the left is object X compared to object Y2"

"How far is object X from object Y2”

= Large-scale spatial VQA dataset, SpatialVLM specifically designed for
reasoning in quantitative metric spaces



Sizes and metric distances between objects

Distances can also be context-dependent

The distance between the man and the
motorcycle is usually much smaller in a city
environment compared to a highway
environment

aman riding a motorcycle in front of an orange bus

10



Common sense in language foundation models

Pre-trained language model (e.g., trained on Wikipedia texts) act as
a knowledge storage

[President Franklin <M> born <M> January 1882.

D. Roosevelt was <M> in]

Lily couldn't <M>. The waitress
had brought the largest <M> of believe her eyes <M>
chocolate cake <M> seen. piece <M> she had ever

[Our <M> hand-picked and sun-dried peaches are <M> at our ]

<M> orchard in Georgia.

President Franklin D.
Roosevelt was born
in January 1882.

Pre-training

Fine-tuning

When was Franklin D. -
[ Roosevelt born? - I5 1882
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Common sense in language foundation models

s LLMs contain knowledge about spatial arrangements of objects

=> vuseful for daily tasks of robots (e.g., setting a table, tidying
up a room)

But spatial reasoning based on LLMs (e.g., translation by GPT-4 to a form
that Wolfram Alpha can accept) is still difficult: especially world math
problems that involved spatial reasoning

Ziruvi Zhao, Wee Sun Lee, and David Hsu (2023). Large language models as commonsense knowledge for large-scale task planning,
2023. In Proceedings of the NeurIlPS 2023 Workshop on Foundation Models for Decision Making.

Ernest Davis (2024). Mathematics, word problems, common sense, and artificial intelligence. Bulletin of the American Mathematical
Society.
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Common Sense in Visual and V&L Foundation Model

Especially V&L foundation models (e.g., CLIP): remarkable performance in
visual question answering

Emerging video foundation models provide commonsense knowledge with
respect to postconditions of actions and resulting object locations

Temporal Commonsense Reasoning

Q: Infer the shape drawn by the robotic arm on the surface of the latte according to its movements?
A: It seems like the robotic arm is drawing a heart on the latte.

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh, Leonidas Guibas, and Fei Xia (2024).
SpatialVLM: Endowing vision-language models with spatial reasoning capabilities. arXiv:2401.12168

Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu, Yanpeng Zhao, Mohammadreza, Salehi, Aditya Kusupati, Jack Hessel, Ali Farhadi,
and Yejin Choi (2022). Merlotreserve: Neural script knowledge through vision and language and sound. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 16375-16387).

Yi Wang et al. (2024). InternVideo2: Scaling video foundation models for multimodal video understanding. arXiv:2403.15377 13



Spatial common sense in a navigation task
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m Task setup: Given a high-level instruction where the agent needs to find the
object described by the instruction

= As the agent could be anywhere in the envrionment, to correctly
find the object, it needs to navigate to the position where the
object becomes visible, then the agent can identiy the correct
objects among all visible objects

s Challenges: How to effectively explore the environment ¢
How to better generalize to previously unseen environment ¢

Mingxiao Li*, Zehao Wang*, Tinne Tuytelaars, and Marie-Francine Moens. Layout-aware dreamer for embodied referring expression
grounding (2022). In Proceedings of the AAAI Conference on Artificial Intelligence 37 (1), 1386-1395.
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Spatial common sense in a navigation task

Learns to infer the room category distribution of neighboring unexplored areas along the path
- effectively introduces layout common sense of room-to-room transitions
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Leverage the knowledge in pretrained text-image generation model = imagine the destination
beforehand to help the agent to conduct more effective exploration

[1] Chen, S., Guhur, P.-L.,, Tapaswi, M., Schmid, C. & Laptev, I. 2022. Think Global, Act Local: Dual-scale Graph Transformer for Vision-
and-Language Navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16537-16547.

Mingxiao Li*, Zehao Wang®, Tinne Tuytelaars, and Marie-Francine Moens. Layout-aware dreamer for embodied referring expression
grounding (2022). In Proceedings of the AAAI Conference on Artificial Intelligence 37 (1), 1386-1395.
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Cases where common sense is insufficient

s GPT-4, a large multi-modal foundation model, when given two facts:
R1(x,y) and R2(y,z): what RCC-8 relations are possible between x and z2

s GPT-4 was able to fill in 70% of the composition table

= Sometimes relation was confused with its inverse (maybe due to
language encoding that ignores spatial structure?)

Anthony G. Cohn (2023). An evaluation of ChatGPT-4’s qualitative spatial reasoning capabilities in RCC-8. arXiv 2309.15577.

16



Cases where common sense is insufficient

= Foundation models struggle with long-tail knowledge

s LLMs when used in object layout planning fail to generate suitable layouts
for objects that involved in unusual or unexpected spatial relationships

m Fast and slow models? Former based on common sense in foundation
models, the latter based on object identification and reasoning?

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel (2023). Large language models struggle to learn
long-tail knowledge. In Proceedings of the 40th International Conference on Machine Learning (ICML 2023).

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, P. Abbeel, and Dale Schuurmans (2023). Foundation models for decision making:
Problems, methods, and opportunities. ArXiv 2303.04129.

Ruben Cartuyvels, Wolf Nuyts, and Marie-Francine Moens (2024). Explicitly representing syntax improves sentence-to-layout
prediction of unexpected situations. Transactions of the Association for Computational Linguistics, 12: 264—-282, 2024.
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ial Language Grounding and Translation of Spatial
uage to Coordinates in a 2D or 3D Physical World




It is well-known that humans "imagine" language content in a visual space
It is well-known that humans reason in spatial visual space

Even if we reason with symbolic representations, many practical applications
require identifying the location in the physical world where events/actions have
happened, they will happen or need to happen

How to predict the spatial configurations and location of objects, actions, and
their attributes in a 2D or 3D space?

19



Language grounding in 2D or 3D physical space

This work has potential for real-time language understanding in a visual

context:
Language communication to robots, machines, self-driving cars, ...

Translation of spatial language to 2D or 3D space opens possibilities of
quantitative reasoning in such a space, which can complement qualitative

symbolic representations and reasoning

This work is a step towards evaluating spatial language understanding by
visualizing the interpreted content

20



Text-to-image/video synthesis

Text-to-image and text-to-video synthesis techniques aimed at
naturally composing and visualizing text instances:

Many practical applications in education, gaming, creating virtual
realities steered and manipulated through language

21



T2l synthesis: integration of a scene graph

Text is first translated into a scene graph (= symbolic representation
expressing the objects and their semantic/spatial relationships)

car ~ left of = car — above

J
The spatial layout is generated from the scene graph \“93,\“’“;‘*‘9“‘ grass

above below left of tree
v L 4 \J
playingfield person < above

A person above a play-
ingfield and left of an-
other person left of
grass, with a car left of
a car above the grass.

Use of a graph convolution network composed of several graph
convolution layers to represent objects and their relationships

Followed by steps of layout prediction and pixel prediction

22



T2l synthesis: integration of a scene graph

Graph Layout prediction
Convolution 1
Downsample

man <= right of <= man

¥ \/
throwing boy <= behind -—
frisbee on == patio B

Noise Conv Upsample Conv
Input: Scene graph .
Object Scene
: Cascaded Refinement Network Output: Image

features layout

Figure 2. Overview of our image generation network f for generating images from scene graphs. The input to the model is a scene graph
specifying objects and relationships; it is processed with a graph convolution network (Figure 3) which passes information along edges to
compute embedding vectors for all objects. These vectors are used to predict bounding boxes and segmentation masks for objects, which
are combined to form a scene layout (Figure 4). The layout is converted to an image using a cascaded refinement network (CRN) [6]. The
model is trained adversarially against a pair of discriminator networks. During training the model observes ground-truth object bounding
boxes and (optionally) segmentation masks, but these are predicted by the model at test-time.

Justin Johnson, Agrim Gupta, and Li Fei-Fei (2018). Image generation from scene graphs. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR).

23



T2l synthesis: integration of a scene graph

More details

Scene graphs were manually created
Many semantic relationships are spatial

A generative adversarial network was trained end-to-end including several loss
functions

Interesting to mention is the box loss for layout prediction:
Box loss: Ly, = ?=1||bi — bl-”lwbich penalizes the L;difference between

ground-truth b; and predicted box b;, where n = number of objects in the

graph
Optimized over all N training data

Problem of semantic standards for object and relationship names in the scene
graph

Justin Johnson, Agrim Gupta. and Li Fei-Fei (2018). Image generation from scene graphs. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR).
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Map text to 3D

BERT backbone
Model input — Medical text tokenized with WordPiece
Model output — [CLS] token representation projected into 3D

Figure 1: Given the
text with implicit refer-
ence to lungs: “Divided
into two lobes, an up-
per and a lower lobe,
by the oblique fissure,

Model parameters

/
y = Linear(BERT(x))

/ :

4 \ which extends from the
3D vector of input costal to the mediastinal
output tokens surface” (Drake et al.,

2009), our model learns
the grounding indicated
by the star.

Loss function: Enables reasoning about the semantic relatedness of medical text

Dusan Gruijicic, Gorjan Radevski, Tinne Tuytelaars, and Matthew Blaschko (2020). Learning to ground medical text in a 3D human
atlas. In Proceedings of the Conference on Computational Natural Language Learning (CoNLL). ACL.
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Map text to 3D

* Not only grounding the medical article to the right organ
but also to the appropriate location within the organ
Soft Organ Distance loss based on the other organs mentioned as context without
any explicit annotations at that level of granularity
* Could be refined by considering spatial language

Total number of organs

\ Softmin across the distances as
F Eudlid dist BetweEn i weights for the contributions of L6, SRTBLLGR
7 uclidean distances between the individual points :
i eX[) £0 /')/()) prediction & each sampled organ nelhvioLE pfom 2 of i-th organ point
E L: - point x 4
J \ é |
L1 exp(—L5/70) exp(=llg = yll2/) v
i J || Iz - L= ci
Total loss minimized | p vy—y N ] o »
' \ / L iy exp(= g = yill2/%) NE=
Organ loss for i-th organ é?:ﬁ gsg;:bggﬁ‘rt\ / \ orgen \o
i Loss contribution
calculated as the sum of Temperature term Model point Tt Loss co

contributions of its points prediction term

Minimized over training instances

Dusan Gruijicic, Gorjan Radevski, Tinne Tuytelaars, and Matthew Blaschko (2020). Learning to ground medical text in a 3D human

atlas. In Proceedings of the Conference on Computational Natural Language Learning (CoNLL). ACL.
26
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a video game controller. design.
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Emposing a structural loss in layout prediction

Layout predictor py,

Text embeddings

Layout
Layout decoder

’? vvvvvv

1]
Predicted layout encoder
A person or,l’ a Frozen text 1
skateboard encoder t¢ Text embeddings
Input caption

Figure 2: Overview of text-to-layout prediction.

m Constrastive structural loss enforces:

The grammatical structure found in the parse tree of the input
sentence into the representations used by the layout predictor

That the object representations to be close to the tree
positional embeddings of the sentence, but far from tree
positional embeddings of other sentences

Ruben Cartuyvels, Wolf Nuyts, and Marie-Francine Moens (2024). Explicitly representing syntax improves sentence-to-layout prediction
of unexpected situations. Transactions of the Association for Computational Linguistics, 12: 264—282, 2024.
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Spatial reasoning for robot manipulation

ﬁ ' Embeddings €3 and €, indicate attributes such as spatial relationships
Instruction (—BI-STM e referred to in the instruction
(T) E Conv1D |
€ a ‘
- [E1,E) [€3.€4]
D 2 ( & | Spatial Softmax l(:"'*‘!/-‘)
'Q/ g = | > U-Net B Expected 2D pose (.., )
2 __Object X v 0
t Detection
U . .
I 0 Embeddings are concatened in V
S Alignment between objects in the instruction and objects in the image by

pixelwise correlation to obtain embeddings of the objects €; and é,
Fig. 3. The Lang-UNet model takes the instruction text 7" and the detected objects X along with their sizes S to predict the start and end co-ordinates. ©

represents pixel-wise correlation. The U-Net has four Conv5x5(128)-ELU layers followed by four transposed convolutions of the same size and a bottleneck
Conv1x1(2) layer. Section IV explains the network in more detail.

Compositional generalization of the objects and their spatial relations:

" The U-Net (convolutional hourglass network) has no notion of which object is at a
specific position; it is only aware that a particular object selected via €1 or €, is
present

" So, U-NET learns embeddings of spatial relationships which allow to predict start and

end coordinates: if the model has learned to find the position of an apple to the left of
the bananag, it will generalize to an orange left to the banana

Sagar Gubbi Venkatesh, Anirban Biswas, Raviteja Upadrashta, Vikram Srinivasan, Partha Talukdar, and Bharadwaj Amrutur (2021).

Spatial reasoning from natural language instructions for robot manipulation. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA 2021). 29



From qualitative to quantitative reasoning

Suppose qualitative spatial relationships available in annotated
text data to train a model, how can we leverage these in a
model that predicts the relative position of the objects on a 2D
canvas ¢

Model could be easily extended to a prediction in a 3D physical
space

30



From qualitative to quantitative reasoning

Suppose a robot that must place objects on a 2D canvas following
natural language instructions that describe the relative position
between two objects (e.g., the book is to the left of the computer,
a man rides a horse)

The relative position of an object 0; is defined by its x and y
coordinates on the 2D canvas

Suppose that the objects were already detected in the instruction,
but we do not have an annotated training dataset that pairs an
object with its 2D coordinates of the canvas

However, we do have a training set of instructions that are
annotated with the spatial relations left, right, under, and above
between each two objects mentioned (from the viewpoint of the
robot)

Performing spatial reasoning, we can reduce the relations to right
and above

31



From qualitative to quantitative reasoning

A spatial triplet (1;;,0;,05) is composed of a spatial predicate 1;; and
its object arguments 0; and 0;

When we train a model that predicts the relative positions of the
objects in the 2D physical space, a common loss might compute the
negative log likelihood of the triplet and minimize it

And combined (e.g., in a sum) with losses that promote the relative
positioning of the objects: if rij=right, x;>x;

if rij=above, y;i>Yy;j

Resulting in the following losses:
Lyighe = max(0,%; + m — %)

i : Lobove = max(0,9; + m — 9;)
where m is a margin

E.g., the predicted poinffj should be at least a distance m smaller than predicted
point X; for this loss to be zero

The proposed losses are summed over the N training examples



Current diffusion models (e.g., DALLE-E) work on top of CLIP
representations and generate full scenes conditioned on an input text
prompt

However, they lack spatial reasoning skills to determine the correct
positioning of objects given in the input (e.g., a suitcase is left to the
person)

Leigang Qu, Shenggiong Wu, Hao Fei, Ligiang Nie, and Tat-Seng Chua (2023). LayoutLLM-T2I: Eliciting layout guidance from LLM
for text-to-image generation.

Ruben Cartuyvels, Wolf Nuyts, and Marie-Francine Moens (2024). Explicitly representing syntax improves sentence-to-layout
prediction of unexpected situations. Transactions of the Association for Computational Linguistics, 12: 264—-282, 2024.

33



Giving a command to your self-driving car

C4AV @ ECCV 2020

MMANDS FOR AUTONOMOUS VEHICLES WORKSHOP
Ch(]”enge co S FOR AUTONOMOUS VEHICLES WORKSHO

23 AUGUST 2020 - GLASGOW

- The task of visual grounding requires locating the most relevant region or
object in an image, given a natural language query

(a) You can park up ahead (b) My friend is getting (c) Yeah that would be my
behind the silver car, next out of the car. That means son on the stairs next to the
to that lamppost with the we arrived at our destina- bus. Pick him up please
orange sign on it tion! Stop and let me out

too!

(d) After that man in the (e) There’s my mum, on (f) Turn around and park
blue top has passed, turn the right! The one walking in front of that vehicle in
left closest to us. Park near her, the shade

she might want a lift

Fig. 2: Some examples from the Talk2Car dataset [5]. Each command describes
an action that the car has to execute relevant to a referred object found in
the scene (here indicated by the red 3D-bounding box). The referred object is
indicated in bold in each command. Best seen in color.

Thierry Deruyttere, Simon Vandenhende, Dusan Gruijicic, Yu Liv, Luc Van Gool, Matthew Blaschko, Tinne Tuytelaars & Marie-Francine Moens
(2020). Commands 4 autonomous vehicles (C4AV) workshop summary. In Proceedings of the 16th European Conference on Computer Vision.
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Spatial dialogue to resolve ambiguity

A component for visual uncertainty
analysis of the referred obijects

How can we report back the
uncertainty of the self-driving to the
passenger?¢ => By generating
sentences based on predicted
attributes taking into account the
features of uncertain objects

(a) The objects that cause uncertainty for the command: “Parallel
park behind the car on the left”.

(b) The objects that cause uncertainty for the command: “Change
lanes and get behind the white car”.

(c) The objects that cause uncertainty for the command: “After that
signaling cone, turn left”.

Fig. 5. Uncertainty Examples. Examples of uncertain objects detected in different
scenes. We see that the objects flagged as uncertain by URS are often from the same
(super)class. Best viewed in color. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Thierry Deruyttere, Victor Milewski, and Marie-Francine Moens (2021). Giving commands to a self-driving car: How to deal with

uncertain situations? Engineering Applications of Artificial Intelligence, 103, Art. No. 104257, 1-20.
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Destination and trajectory prediction

Top-down

3D
bounding
boxes

Predicted ,
Referred ?::':2::;
Object
o 3D object Rg{ﬁ;’;d | Trajectory :
Prediction % Predi Predictor —
Object redictor

Fealtures

Command park in front of that white car on the left
side of the road

Gruijicic, Dusan, Deruyttere, Thierry, Moens, Marie-Francine, and Blaschko, Matthew B. (2022). Predicting physical world destinations for commands
given to self-driving cars. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2022) (pp. 715-725). AAAIL.
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poral Language Grounding and Translation of
poral Language to 1D Timeline




Document number Treatments (16) Tests (10) Problems (10) Occurrences (16) Evidentials (4) Clinical departments (7 C)

Toe 27 29 Sat 31 November Tue 03 Thy 05 Sa07 Mon 09 Wed 11 Fi 13 Nov 15
Admission date: October 28, 2015 — L L L ﬁ L L L L L L o
left carotid stenting |
Discharge date: November 13, 2015 the procedure. :
. : coronary arery bypass surgery ]
History of present illness etz buincston -
physical ther:
Ms. Bridge is a 74 y/o female admitted to outside hospital on 2015-10-21 with m:':; 1
o= tubated 1
vomiting and sh of breath. Initial EKG showed ST oo -
but cardi were not elevated. Sh lly underwent a beta blockers. e e ———— e
7 durotics e — e —— ]
cardiac cath to assess coronary disease which revealed three vessel coronary gonty duresed e s—— -
artery disease. She was then transferred to The Hospital for Orthopedics for Eploardia pacing wires |
Heparin ——
surgical intervention. Coumadin
EKG
cardiac onzymes.
1 rdiac cath
Hospital course s -
Ms. Bridge was admitted from OSH for coronary artery bypass surgery. She Lo sond -
underwent usual pre-operative testing along with carotid ultrasound. CNIS o Invashve m =
led d and she ultimately left carotid stenting by T
vascular surgery on 10-30. Please see report for details. On 11-02 she was brought T
e
to the operating room where she underwent a coronary artery bypass graft x 2. coronary dsesse I
Please see operative report for surgical details. She tolerated the procedure iwell e e T
and was transferred to the CSRU for invasive monitoring in stable condition. ‘chest discomiort
Later on op day sedation was weaned, she awoke neurologically intact and was shortness of broath
extubated. On post-op day one chest tubes were removed and beta blockers and ST dagressions .
diuretics were initiated. She was gently diuresed towards her pre-op weight. Also i) 1
s 5 admited
on this day she was transferred to the SDU. Early on post-op day two Ms. Bridge Admission |
had an episode of aphasia. She underwent an immediate head CT and Neuro vascular W'm 1 -
consult and was transferred back to the CSRU. CT was negative and she returned ansiomed -
bl et ot ety vl CSRU Nl ocvd i —
episode was most concerning for TIA. Epicardial pacing wires were removed on awoke neurological intact 1
post-op day four. After remaining stable in the CSRU for several days without oD oA -
change in neuro status she was transferred back to the SDU on post-op day four. Nﬂrﬂm 1
She was then started on Heparin with transition to Coumadin ( goal INR of 2-3 h:?n B ———————
secondary to h/o BlaRSERIDV 's). During @iitife pOSt-op Goiiisé she wes followsd ranstion L —
by physi for strength and mobility. She continued to dily Discharge 1
over the next several days without any other post-op complications. She was ened
discharged on post-op day 11. stable conddion | -
outside hospital
osH
‘The Hospital for Orthopedics T T T T g
the operating room
the CSRU
the SOU
CSRU

Figure 1: Overview of TIEVis. Clinical events (marked words) are extracted from a clinical report (A) and time periods are
estimated for each event. Users can hover over events to bi-directionally highlight them in the report and the visualization
(B). An interactive demo is available at: https://augment.cs.kuleuven.be/tievis/

Croon et al. (2021). TIEVis: A visual analytics dashboard for temporal information extracted from clinical reports.
ion Proceedings of the 26th International Conference on Intelligent User Interfaces (pp. 34-36). ACM
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Direct prediction of a relative time-line

Pairwise temporal

Input: Text with Temporal Entities (n=3)

| L

| t

; ; . Direct prediction
reiation extracion | 3B Last week, John jogged for many hours.
TimeML Annotations Timeli Time-line
DCT Imeiine
Construction
A before
includes f simultaneous 1988 DCT

o) Ce )

[ l

Last week, John jogged for many hours.

| tp: many hours |

t1: last week
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Direct prediction of a relative time-line

Predicted Time-line

e;: jogged
[ Document-Creation Time ]

ty: many hours

' \'
t;: last week
Y \ ‘\
1 AJ e
’ \ ~o

biRNNg biRNN |—}- biRNNg biRNNg
biRNNg —[biRNNy | biRNNg biRNNg | —biRNNg biRNN | biRNN | biRNN |
Cw» J Cw J 0w JCw ) O J L w J O w J L w J L v ]

f f f f f f f f f

Last week , John jogged for many hours

biRNNg biRNNg
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Direct prediction of a relative time-line

Train on data annotated with temporal links

Use relation between intervals and points to

TimeML

/’ncludex

Ui

DCT

beﬁ‘)

Last week, John jogged for many hours.

re
simultaneous

2

construct a differentiable loss

Time-line

<:> ¢): jogged

t5: many hours

t;: last week

Allen Algebra

Temporal Links

Point Algebra

X precedes Y X before Y =
Y preceded by X Y after X = Sy
X starts Y X begins Y Sx = Sy
Y started by X Y begun by X e < €y
X finishes Y X endsY €xr = €y
Y finished by X Y ended by X Sy < Sy
X during Y X is included Y Sy < Sz
Y includes X Y includes X ey < €y
X meets Y X immediately before Y g
Y met by X Y immediately after X el
X overlaps Y absent* i z Sy
Y overlapped by X  absent? e
exr < €y
X simultaneous Y Sy = Sy
s X identity Y er = ey
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Direct prediction of a relative time-line

Total Time-line Loss L. (t,0):

n The predicted point X should be at least a distance
m; smaller than predicted point J for this loss to be
zero

max(X + m; —9,0) ifx < y/

LpElt0) = {max(la? -yl —m;,0) ifx = Y~

Predicted point X and y should be very close to each
other at most a distance m; away

LI = ) LElL0) e e

§€lpa(r) s, O X oe

Where m; = margin, 1" refers to a TlLink, R(t) refers X simultaneous Y

to the set of ground truth T-links of input text t Do :
X before Y —
Each TLink (relation) loss L,.(r|t, 8) is the sum of the . :
Xincludes Y —_—

point-wise losses L, (£]t, ) of the corresponding

algebraic constraints & € Ip, () from the table in the

previous slide Figure 3: Visualization of the time-line loss L,

with margin m,, for two events X and Y, and
E.g., combined with negative log likelihood loss of the TLinks simultaneous, before, and includes. The
temporal relation red arrows’ lengths indicate the loss per relation,
i.e. how much the points should be shifted to sat-
isfy each relation.

Artuur Leeuwenberg and Marie-Francine Moens (201 8). Structured Learning for Temporal Relation Extraction from Clinical Records. In

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages
1150-1158. ACL.
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Direct prediction of a relative time-line

C-TLM S-TLM

Results: TempEval-3 56.1 || 50.2

Input: Text with Temporal Entities (n=3)
Relation Extraction: 0(n9 © | [t | ( P H Direct Prediction: O(n)
ing o f ) i . 3 _
Nngetal. (2017) 5 Last week, John jogged for many hours. S FCM amg: Ol M,
TimeML Annotations Time-line
DCT 52 3
e meoss . P ~
mcludes kefore vlmullaneouv m DCT

(5 many hours|

)

Last Week John jogged for many hours

¢;: last week ]

*Temporal awareness F1 measure (UzZaman & Allen, 2011)
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Direct prediction of an absolute time-line

Lo ] ( e3 | ([ 1170272001

After she had an episode of aphasia, she underwent a head CT and neuro consult on 11-02.

DCT: 11/04/2001
before before

before

)

After she had an episode of aphasia, she underwent a head CT and neuro consult on 11-02.

—

: g ; /3 00:00 /4 00:00
177 1170272001 (ot imazonr ) 11/2/2001 00:00 113 00:00  11/4 00:00

- \ » | | |

[ I I

t1: 11/02/2001 |

Na

1 N
L=+ Uz
1 N;l(-’ﬁ)

&
() =) |8t — o]+ |37 — 2| + 27" — 27|

C

assume two-piece normal distribution

start, duration and end

Artuur Leeuwenberg and Marie-Francine Moens (2022). Towards extracting absolute timelines from English clinical reports. IEEE/ACM

Transactions on Audio, Speech, and Language Processing 28, 2710-2719. a4



