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Commonsense knowledge

Essential for many AI applications, including those in natural 
language processing, visual processing, and other tasks
■ For instance, in natural language understanding and 

visual understanding it allows to cope with incomplete, 
ambiguous and noisy information

Humans learn commonsense knowledge from life events and 
experiences

Can we acquire and store commonsense knowledge so that the 
machine can use it in (spatial) language understanding?



Spatial common sense in knowledge bases
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• Stored in knowledge bases like 
ConceptNet

• Here used in vision-language 
navigation task 

• Utilize informative clues obtained 
from a KB for exploration

Chen Gao, Jinyu Chen Si Liu, Luting Wang, Qiong Zhang, and Qi Wu (2021). Room-and-object aware knowledge reasoning for remote 
embodied referring expression. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 3064-3073). 



Common sense in images paired with language
A girl rides a horse

• = a spatial  “question-answering" task where the question consists in a spatial 
commonsense query such as where is the “man" located with respect to a “horse" 
when a “man" is “feeding" the “horse"?
• The answer is a 2D  “imagined” representation in contrast with a sentence/word as 

typically done in question-answering tasks

• How to learn this task:
• Given a structured text input of the form (Subject, Relationship, Object) = (S,R,O)
• Predict the 2D relative spatial arrangement of two objects (output)

• Train the task in a supervised setting:
• Training set of image-text pairs, where the size and location of bounding boxes 

of objects in images serve as ground truth

Guillem Collell and Marie-Francine Moens (2018). Learning representations specialized in spatial knowledge: leveraging 
language and vision. Transactions of the Association for Computational Linguistics (TACL), 6, 133-144.

From images paired with text
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Simple feedforward neural network

Triplet of words, 
coordinates of subject

Word embeddings to 
generalize over unseen words

Loss: mean squared error

Guillem Collell, Luc Van Gool, and Marie-Francine Moens (2018). 
Acquiring common sense spatial knowledge through implicit spatial 
templates. In Proceedings of the Thirty-Second AAAI Conference on 
Artificial Intelligence (AAAI 2018) (pp. 6765-6772). AAAI.
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Common sense in images paired with language

Qualitative evaluation

Guillem Collell and Marie-Francine Moens (2017). Learning Visually Grounded Common Sense Spatial Knowledge for Implicit 
Spatial Language. In Proceedings of the 13th International Symposium on Commonsense Reasoning, University College London. CEUR. 
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Generalization through 

the word embeddings



Common sense in images paired with language
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Guillem Collell, Thierry Deruyttere, and Moens-Francine Moens (2021). Probing spatial cues: Canonical spatial templates for object 
relationship understanding. IEEE Access 9, 134298-134318.
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Sizes and metric distances between objects

■ Spatial reasoning tasks often involve the estimation of the size of an object or the 
metric distance between objects (e.g., when a robot or autonomous vehicles 
understands instructions in natural language)

■ Valid sizes and distances are usually part of commonsense knowledge that humans 
possess when using language

■ Sizes and distances could be estimated based on visual data

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh, Leonidas Guibas, and Fei Xia (2024). SpatialVLM: 
Endowing vision-language models with spatial reasoning capabilities. arXiv: 2401.12168.
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■ Given the importance of the topic, we witness a rise in visual question answering 
datasets that contain quantitative spatial question such as:

"How much to the left is object X compared to object Y?" 
"How far is object X from object Y?”

■ Large-scale spatial VQA dataset, SpatialVLM specifically designed for 
reasoning in quantitative metric spaces

Sizes and metric distances between objects



■ Distances can also be context-dependent

The distance between the man and the 
motorcycle is usually much smaller in a city 
environment compared to a highway 
environment
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Sizes and metric distances between objects



11

Common sense in language foundation models

■ Pre-trained language model (e.g., trained on Wikipedia texts) act as 
a knowledge storage



12

Common sense in language foundation models

■ LLMs contain knowledge about spatial arrangements of objects 
=> useful for daily tasks of robots (e.g., setting a table, tidying 
up a room)

But spatial reasoning based on LLMs (e.g., translation by GPT-4 to a form 
that Wolfram Alpha can accept) is still difficult: especially world math 
problems that involved spatial reasoning  

Zirui Zhao, Wee Sun Lee, and David Hsu (2023). Large language models as commonsense knowledge for large-scale task planning, 
2023. In Proceedings of the NeurIPS 2023 Workshop on Foundation Models for Decision Making. 

Ernest Davis (2024). Mathematics, word problems, common sense, and artificial intelligence. Bulletin of the American Mathematical 
Society.



Common Sense in Visual and V&L Foundation Models
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■ Especially V&L foundation models (e.g., CLIP): remarkable performance in 
visual question answering

■ Emerging video foundation models provide commonsense knowledge with 
respect to postconditions of actions and resulting object locations 

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh, Leonidas Guibas, and Fei Xia (2024). 
SpatialVLM: Endowing vision-language models with spatial reasoning capabilities. arXiv:2401.12168

Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu, Yanpeng Zhao, Mohammadreza, Salehi, Aditya Kusupati, Jack Hessel, Ali Farhadi, 
and Yejin Choi (2022). Merlotreserve: Neural script knowledge through vision and language and sound. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 16375–16387).

Yi Wang et al. (2024). InternVideo2: Scaling video foundation models for multimodal video understanding. arXiv:2403.15377



Mingxiao Li*, Zehao Wang*, Tinne Tuytelaars, and Marie-Francine Moens.  Layout-aware dreamer for embodied referring expression 
grounding (2022). In Proceedings of the AAAI Conference on Artificial Intelligence 37 (1), 1386-1395.

■ Task setup:  Given a high-level instruction where the agent needs to find the 
object described by the instruction 

■ As the agent could be anywhere in the envrionment, to correctly
find the object, it needs to navigate to the position where the
object becomes visible, then the agent can identiy the correct
objects among all visible objects

■ Challenges:  How to effectively explore the environment ? 
How to better generalize to previously unseen environment ?
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Spatial common sense in a navigation task



Baseline model: 
VLN-DUET [1]

[1] Chen, S., Guhur, P.-L., Tapaswi, M., Schmid, C. & Laptev, I. 2022. Think Global, Act Local: Dual-scale Graph Transformer for Vision-
and-Language Navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16537–16547.

Learns to infer the room category distribution of neighboring unexplored areas along the path 
à effectively introduces layout common sense of room-to-room transitions

Leverage the knowledge in pretrained text-image generation model à imagine the destination 
beforehand to help the agent to conduct more effective exploration

Spatial common sense in a navigation task
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Mingxiao Li*, Zehao Wang*, Tinne Tuytelaars, and Marie-Francine Moens.  Layout-aware dreamer for embodied referring expression 
grounding (2022). In Proceedings of the AAAI Conference on Artificial Intelligence 37 (1), 1386-1395.



Cases where common sense is insufficient

■ GPT-4, a large multi-modal foundation model, when given two facts: 
R1(x,y) and R2(y,z): what RCC-8 relations are possible between x and z?

■ GPT-4 was able to fill in 70% of the composition table 
■ Sometimes relation was confused with its inverse (maybe due to 

language encoding that ignores spatial structure?)

Anthony G. Cohn (2023). An evaluation of ChatGPT-4’s qualitative spatial reasoning capabilities in RCC-8. arXiv 2309.15577.
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Cases where common sense is insufficient

■ Foundation models struggle with long-tail knowledge
■ LLMs when used in object layout planning fail to generate suitable layouts 

for objects that involved in unusual or unexpected spatial relationships
■ Fast and slow models? Former based on common sense in foundation 

models, the latter based on object identification and reasoning?

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel (2023). Large language models struggle to learn 
long-tail knowledge. In Proceedings of the 40th International Conference on Machine Learning (ICML 2023). 

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, P. Abbeel, and Dale Schuurmans (2023). Foundation models for decision making: 
Problems, methods, and opportunities. ArXiv 2303.04129.

Ruben Cartuyvels, Wolf Nuyts, and Marie-Francine Moens (2024). Explicitly representing syntax improves sentence-to-layout 
prediction of unexpected situations. Transactions of the Association for Computational Linguistics, 12: 264–282, 2024.
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Spatial Language Grounding and Translation of Spatial 
Language to Coordinates in a 2D or 3D Physical World



• It is well-known that humans "imagine" language content in a visual space
• It is well-known that humans reason in spatial visual space
• Even if we reason with symbolic representations, many practical applications 

require identifying the location in the physical world where events/actions have 
happened, they will happen or need to happen

• How to predict the spatial configurations and location of objects, actions, and 
their attributes in a 2D or 3D space? 
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Language grounding in 2D or 3D physical space

• This work has potential for real-time language understanding in a visual 
context: 
• Language communication to robots, machines, self-driving cars, …
• Translation of spatial language to 2D or 3D space opens possibilities of 

quantitative reasoning in such a space, which can complement qualitative 
symbolic representations and reasoning

• This work is a step towards evaluating spatial language understanding by 
visualizing the interpreted content
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Text-to-image/video synthesis

Text-to-image and text-to-video synthesis techniques aimed at 
naturally composing and visualizing text instances: 
- Many practical applications in education, gaming, creating virtual 

realities steered and manipulated through language 
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• Text is first translated into a scene graph (= symbolic representation 
expressing the objects and their semantic/spatial relationships)

• The spatial layout is generated from the scene graph

• Use of a graph convolution network composed of several graph 
convolution layers to represent objects and their relationships

• Followed by steps of layout prediction and pixel prediction 

T2I synthesis: integration of a scene graph
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T2I synthesis: integration of a scene graph

Justin Johnson, Agrim Gupta, and Li Fei-Fei (2018). Image generation from scene graphs. In Proceedings of the Conference on Computer 
Vision and Pattern Recognition (CVPR).
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More details

• Scene graphs were manually created
• Many semantic relationships are spatial
• A generative adversarial network was trained end-to-end including several loss 

functions
• Interesting to mention is the box loss for layout prediction:

• Box loss: ℒ!"# = ∑$%&' 𝑏$ − &𝑏$ &which penalizes the 𝐿&difference between 
ground-truth 𝑏$ and predicted box &𝑏$, where 𝑛 = number of objects in the 
graph

• Optimized over all 𝑁 training data

• Problem of semantic standards for object and relationship names in the scene 
graph

T2I synthesis: integration of a scene graph

Justin Johnson, Agrim Gupta.  and Li Fei-Fei (2018). Image generation from scene graphs. In Proceedings of the Conference on Computer 
Vision and Pattern Recognition (CVPR).
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• BERT backbone
• Model input ー Medical text tokenized with WordPiece
• Model output ー [CLS] token representation projected into 3D

• Loss function: Enables reasoning about the semantic relatedness of medical text

Map text to 3D

Dusan Grujicic, Gorjan Radevski, Tinne Tuytelaars, and Matthew Blaschko (2020). Learning to ground medical text in a 3D human 
atlas. In Proceedings of the Conference on Computational Natural Language Learning (CoNLL). ACL.
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Soft Organ Distance loss

Minimized over all 

• Not only grounding the medical article to the right organ 
but also to the appropriate location within the organ 
based on the other organs mentioned as context without 
any explicit annotations at that level of granularity

• Could be refined by considering spatial language

Map text to 3D

Dusan Grujicic, Gorjan Radevski, Tinne Tuytelaars, and Matthew Blaschko (2020). Learning to ground medical text in a 3D human 
atlas. In Proceedings of the Conference on Computational Natural Language Learning (CoNLL). ACL.
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Minimized over training instances
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Emposing a structural loss in layout prediction
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Ruben Cartuyvels, Wolf Nuyts, and Marie-Francine Moens (2024). Explicitly representing syntax improves sentence-to-layout prediction 
of unexpected situations. Transactions of the Association for Computational Linguistics, 12: 264–282, 2024.

■ Constrastive structural loss enforces:

◻ The grammatical structure found in the parse tree of the input 
sentence into the representations used by the layout predictor

◻ That the object representations to be close to the tree 
positional embeddings of the sentence, but far from tree 
positional embeddings of other sentences



Spatial reasoning for robot manipulation

Sagar Gubbi Venkatesh, Anirban Biswas, Raviteja Upadrashta, Vikram Srinivasan, Partha Talukdar, and Bharadwaj Amrutur (2021). 
Spatial reasoning from natural language instructions for robot manipulation. In Proceedings of the IEEE International Conference on 
Robotics and Automation (ICRA 2021). 29

Alignment between objects in the instruction and objects in the image by 
pixelwise correlation to obtain embeddings of the objects 𝑒̃! and 𝑒̃"

Embeddings 𝑒̃# and 𝑒̃$ indicate attributes such as spatial relationships 
referred to in the instruction

Embeddings are concatened in 𝑉

■ The U-Net (convolutional hourglass network) has no notion of which object is at a 
specific position; it is only aware that a particular object selected via 𝑒̃! or 𝑒̃" is 
present 

■ So, U-NET learns embeddings of spatial relationships which allow to predict start and 
end coordinates: if the model has learned to find the position of an apple to the left of 
the banana, it will generalize to an orange left to the banana

Compositional generalization of the objects and their spatial relations:



From qualitative to quantitative reasoning

■ Suppose qualitative spatial relationships available in annotated 
text data to train a model,  how can we leverage these in a 
model that predicts the relative position of the objects on a 2D 
canvas ?

■ Model could be easily extended to a prediction in a 3D physical 
space 
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■ Suppose a robot that must place objects on a 2D canvas following 
natural language instructions that describe the relative position 
between two objects (e.g., the book is to the left of the computer, 
a man rides a horse)

■ The relative position of an object 𝑜! is defined by its 𝑥 and 𝑦
coordinates on the 2D canvas

■ Suppose that the objects were already detected in the instruction, 
but we do not have an annotated training dataset that pairs an 
object with its 2D coordinates of the canvas

■ However, we do have a training set of instructions that are 
annotated with the spatial relations left, right, under, and above
between each two objects mentioned (from the viewpoint of the 
robot)

■ Performing  spatial reasoning, we can reduce the relations to right 
and above

From qualitative to quantitative reasoning
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■ A spatial triplet (𝑟!",𝑜!,𝑜") is composed of a spatial predicate 𝑟!" and 
its object arguments 𝑜! and 𝑜"

■ When we train a model that predicts the relative positions of the 
objects in the 2D physical space, a common loss might compute the 
negative log likelihood of the triplet and minimize it

■ And combined (e.g., in a  sum) with losses that promote the relative 
positioning of the objects:

■ Resulting in the following losses:

where 𝑚 is a margin

E.g., the predicted point̂ "𝑥! should be at least a distance 𝑚 smaller than predicted 
point "𝑥" for this loss to be zero 

The proposed losses are summed over the 𝑁 training examples

From qualitative to quantitative reasoning
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■ Current diffusion models (e.g., DALLE-E) work on top of CLIP 
representations and generate full scenes conditioned on an input text 
prompt

■ However, they lack spatial reasoning skills to determine the correct 
positioning of objects given in the input (e.g., a suitcase is left to the 
person)

Leigang Qu, Shengqiong Wu, Hao Fei, Liqiang Nie, and Tat-Seng Chua (2023). LayoutLLM-T2I: Eliciting layout guidance from LLM 
for text-to-image generation. 

Ruben Cartuyvels, Wolf Nuyts, and Marie-Francine Moens (2024). Explicitly representing syntax improves sentence-to-layout 
prediction of unexpected situations. Transactions of the Association for Computational Linguistics, 12: 264–282, 2024.
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Challenge
• The task of visual grounding requires locating the most relevant region or 

object in an image, given a natural language query

Giving a command to your self-driving car

Thierry Deruyttere, Simon Vandenhende, Dusan Grujicic, Yu Liu, Luc Van Gool, Matthew Blaschko, Tinne Tuytelaars & Marie-Francine Moens 
(2020). Commands 4 autonomous vehicles (C4AV) workshop summary. In Proceedings of the 16th European Conference on Computer Vision.
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Spatial dialogue to resolve ambiguity
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■ A component for visual uncertainty 
analysis of the referred objects

■ How can we report back the 
uncertainty of the self-driving to the 
passenger? => By generating 
sentences based on predicted 
attributes taking into account the 
features of  uncertain objects

Thierry Deruyttere, Victor Milewski, and Marie-Francine Moens (2021). Giving commands to a self-driving car: How to deal with 
uncertain situations? Engineering Applications of Artificial Intelligence, 103, Art. No. 104257, 1-20. 



Grujicic, Dusan, Deruyttere, Thierry, Moens, Marie-Francine, and Blaschko, Matthew B. (2022). Predicting physical world destinations for commands 
given to self-driving cars. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2022) (pp. 715-725). AAAI.

Destination and trajectory prediction
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Temporal Language Grounding and Translation of 
Temporal Language to 1D Timeline



Robin De Croon et al. (2021). TIEVis: A visual analytics dashboard for temporal information extracted from clinical reports. 
Companion Proceedings of the 26th International Conference on Intelligent User Interfaces (pp. 34-36). ACM
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Direct prediction of a relative time-line

39



Direct prediction of a relative time-line
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■ Train on data annotated with temporal links
■ Use relation between intervals and points to construct a differentiable loss

Direct prediction of a relative time-line
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Total Time-line Loss ℒ!(𝑡, 𝜃): 

ℒ" 𝜉 𝑡, 𝜃 = )
max(-𝑥 + 𝑚! − -𝑦, 0) if 𝑥 < 𝑦
max -𝑥 − -𝑦 − 𝑚!, 0 if 𝑥 = 𝑦

ℒ# 𝑟 𝑡, 𝜃 = 8
$∈&!"(#)

ℒ" 𝜉 𝑡, 𝜃

■ Where 𝑚! = margin, 𝑟 refers to a TLink, 𝑅(𝑡) refers 
to the set of ground truth T-links of input text 𝑡

■ Each TLink (relation) loss ℒ# 𝑟 𝑡, 𝜃 is the sum of the 
point-wise losses  ℒ" 𝜉 𝑡, 𝜃 of the corresponding 
algebraic constraints 𝜉 ∈ 𝐼)*(𝑟) from the table in the 
previous slide

■ E.g., combined with negative log likelihood loss of the 
temporal relation 

■ The predicted point $𝑥 should be at least a distance 
𝑚% smaller than predicted point $𝑦 for this loss to be 
zero 

■ Predicted point $𝑥 and $𝑦 should be very close to each 
other at most a distance 𝑚% away

Artuur Leeuwenberg and Marie-Francine Moens (2018). Structured Learning for Temporal Relation Extraction from Clinical Records. In 
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 
1150–1158. ACL.

Direct prediction of a relative time-line
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Results: TempEval-3 

*Temporal awareness F1 measure (UzZaman & Allen, 2011)

52.3

56.1 50.2

C-TLM S-TLM

Direct prediction of a relative time-line
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Direct prediction of an absolute time-line

Artuur Leeuwenberg and Marie-Francine Moens (2022). Towards extracting absolute timelines from English clinical reports. IEEE/ACM 
Transactions on Audio, Speech, and Language Processing 28, 2710-2719.
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start, duration and end

assume two-piece normal distribution


