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Situated Grounding and Spatial Reasoning

m Multimodal Situated Grounding — co-perception and co-attention are
necessary to understand deixis and relative spatial expressions

Put the big one right here.
| want the cookie on the left behind the donut.
Show me a coffee shop around ... here.
m Understanding Events and their Results — actions change the spatial
nature of the environment
Mary opened the door and left the room.
Put the book in the bag. Take the bag to the car.
Remove the seeds and cut into thin strips, then brown in oil.
m Appreciation of spatial properties of objects - intrinsic vs. relative
Frame of Reference
The tree behind the bench
The bench in front of the tree



Approaches and Tools

= Spatial Reasoning and Situated Grounding
Spatial AMR
= Human-Object Interactions and affordance reasoning

multimodal dialogue and interactions; understanding
events and their results.

= Dense paraphrasing - Data augmentation:

GLAMR (Object Change-tracking)

Converting any modality into textual representations
= Vision Language Action Models (VLA)



Levels of Grounding

1. Self-grounding (unimodal)

Rashonda accepted a job in deep learning because she loves the topic

JJT T Jjjjj
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2. Cross-grounding (multimodal)

Ground Truth:

[A fashionable young woman seated on a
bench]_Agent gazes [into a makeup
mirror]_ A

Retrieved:

[An elderly man]_Agent sitting on [a
bench]_Instrument [ while reading a
book]_Temporal.

Ground Truth/Retrieved:

[A young lady wearing blue and
black]_Agent is running [past an orange
cone]_ E




Situated Grounding and Context

@ Task-oriented dialogues are embodied interactions between
agents, where language, gesture, gaze, and actions are
situated within a common ground shared by all agents in the
communication.
@ Situated semantic grounding assumes shared perception of
agents with co-attention over objects in a situated context,
with co-intention towards a common goal. She thinks... She doesn’t think...

Add one more

Figure 2. "Add one more" is ambiguous out of context, but given context it is remarkably precise.
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and direction
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DARPA Communicating with Computers BAA - Paul Cohen, PM (2015)



Figure: “Put on your bee suit.”

@ What does “bee suit” mean in context?

e An outfit used for beekeeping?
e An outfit resembling a bee?



Motivating Example

Figure: “Put on your bee suit.”

@ What does “bee suit” mean in context?
e An outfit used for beekeeping?
o Generative Lexicon: TELIC = Az, e[ beekeeping (e, z,x)]
e An outfit resembling a bee?
e Generative Lexicon: FORMAL = bee(x)



Motivating Example

Figure: “"Put on your bee suit.”

@ Many such ways to make this distinction
e An outfit used for beekeeping:
o AMR: ARGO (w / wearer): (b / beekeeper)
e An outfit resembling a bee:
e AMR: ARGO (w / wearer): (c / child)



Motivating Example

Figure: “Put on your bee suit.”

TELIC = Az, e[ beekeeping(e, z, x)] ARGO (w / wearer): (b / beekeeper)
FORMAL = bee(x) ARGO (w / wearer): (c / child)

Role-focused Actor-focused




Motivating Example

@ Different representations use different strategies.

@ No matter the strategies, a situationally complete inference
requires grounding representation to items in the discourse
and in the environment.

@ This requires merging deep semantic representation
techniques and flexible neural estimation approaches.
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Situated Grounding and Spatial Reasoning

B Fra mes Of Refe rence Levinson, S. C. (2003). Space in language and culture: Explorations in

cognitive diversity. Cambridge: Cambridge University Press

Absolute (coordinate system)
Relative (from an agent view)
Intrinsic (inherent property of object)

© On the left side of the picture is a big tree.

® On the left side of the picture is a big tree.
© A tree is in the center of the scene.

© The tree's shadow is in the lower left corner.
® A bench is in front of a tree. ® A bench is in front of a tree.

® or ©® A tree is in the center of the scene.

® The tree's shadow is in the lower left corner.
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Interactive Object Recognition in Dialogue

) ° Human Artificial Agent
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B Das, A, Kottur, S., Moura, J. M,, Lee, S., & Batra, D. (2017). Learning cooperative visual dialog agents with
deep reinforcement learning. In Proceedings of the IEEE international conference on computer vision (pp.
2951-2960).

B Shekhar, R., Testoni, A., Fernandez, R., & Bernardi, R. (2019). Jointly Learning to See, Ask, Decide when to
Stop, and then GuessWhat. In CLiC-it.
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B  Kim, Hyounghun, Hao Tan, and Mohit Bansal. "Modality-balanced models for visual dialogue." In
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp. 8091-8098. 2020.
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Spatial Reasoning in Collaborative Tasks

LBuilder> Mission has started,
<Architect> We'll start with & diagonal on the ground of 4

uellow bricks
<Architect> Now add 3 red bricks on the diagonal adJjacent to

the vellow bricks

, =~
‘ 13 20 ;J 28 17 28

Figure 1: An instance of the collaborative building task.
The last instruction was : Now add 3 red bricks on the di-
agonal adjacent to the yellow bricks.

There is a box with a black item between 2 items of [::! Al k2 hekr
the same color and no item on top of that.

Figure 7: Move the large red block diagonally from the top

Figure 2: An example from the NLVR corpus that demon- of the blue column to the top of the yellow column ...
strates spatial focus shift from the black item to the yellow

item.

Dan, S., Kordjamshidi, P., Bonn, J., Bhatia, A., Cai, Z., Palmer, M., & Roth, D. (2020). From Spatial Relations to
Spatial Configurations. Proceedings of The 12th Language Resources and Evaluation Conference (pp. 5855-5864).
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Spatial Reasoning and AMRs

Configuration 1

Configuration 2

tr <tl,el > < t2,e3 >
Im <ll,e2>,<12,e3 > <13,ed >
<sl,from > <sl,from,
sp )
[/ AN <s2,to > {metric = 5spaces}>
| (m/ move-01 :mode imperative m <ml,move, > NULL
:ARGO-PAG (y / you)
:ARG1-PPT (b / block :color (r / red) :size (1 / large)) path NULL
:source (s / space

:ARG1-0f-SE1 (o / on-top-03
:ARG2-SE2 (c / column :color (b2 / blue)
:ARG3-ANC build-space)

:direction (t / trajectory
:ARG4-0f-AXS2 (d / diagonal-01

Trajector (tI)

< 11,51, begin >
< 12,82,end >
{orientation = diagonally

:ARG2-GOL (52 / space Spatial Entity: (e1 / block) (b /.s?zlgc(l:/'ar o) < 1, relative > )
:ARG1-0f-SE1 (02 / on-top-03 R : g FoR 12, relati < I3, relative >
:ARG2-SE2 (c2 / column :color (y / yellow) IES: color (p2/red) :color (r / red)) < [2,relative >
)

first-person

first-person

size (p1/large) | v

QT | <directional, relative>

_Path

<distal, quantitative>
<topological, DC>

‘ :ARG1 s N/ k Yy
\\ :ARG2 52))) Qg‘f\\ 2 ) (p7/ %
: diagonally) %
Spatial Indicator (s1): ‘ [ Motion Indicator: } ‘ Spatial Indicator (s2):
/I,andmark (11 from ) move to J Landmark (12)

Spatial Entity: (e2 /column)
PROPERTIES: color (p4 / blue)

move-01
:ARGO-PAG mover
:ARG2-PPT entity in

" Spatial Entity: (e3/column)
PROPERTIES: color (p6 / yellow)

motion
area (p3/top) :ARG3-GOL destination ‘ area (p5/top)
S :source .
IR:(s / space (t2 / trajectory LS 4 Space
‘ARG1-0f-SE1 (o / on-top-03 :ARG4-of (d / diagonal-01
:ARG2-SE2 (c / column :ARG1 s
:color (b2 / blue) : :ARG2 52))

Figure 3: Graphical Representation of Configuration 1 of Table 3 with aligned AMR : Move the large red block diagonally
Jrom the top of the blue column to the top of the yellow column, which is 5 spaces from the orange cube.

Dan, S., Kordjamshidi, P., Bonn, J., Bhatia, A., Cai, Z., Palmer, M., & Roth, D. (2020). From Spatial Relations to
Spatial Configurations. Proceedings of The 12th Language Resources and Evaluation Conference (pp. 5855-5864).
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Spatial Reasoning in Minecraft

Create models that generate spatial descriptions

& \ N
ARCHITECT CHAT INTERFACE

# Architect: in about the middle build a column five tall

(Builder puts down five orange blocks)

Architect: then two more to the left of the top to make

> a7

Architect: now a yellow 6

(Builder puts down two orange blocks)

Target Structure Build Region

)| Architect: the long edge of the 6 aligns with the stem
BUILDER of the 7 and faces right

Builder: Where does the 6 start?
Architect: behind the 7 from your perspective
Builder: Isitdirectly adjacent?
Architect: yes directly behind it. touches it
:> (Builder puts down twelve yellow blocks, in the shape of a 6)
)f the & is right behind the Golunn of Architect: too much overlap unfortunately

Architect: the colummn of the 6 is right behind the

column of hte 7
. V.

\ - - y,

Figure 1: In the Minecraft Collaborative Building Task, the Architect (A) has to instruct a Builder (B) to build a
target structure. A can observe B, but remains invisible to B. Both players communicate via a chat interface. (NB:
We show B’s actions in the dialogue as a visual aid to the reader.)

Narayan-Chen, A., Jayannavar, P., & Hockenmaier, J. (2019). Collaborative dialogue in Minecraft. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics (pp. 5405-5415).
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Spatial Reasoning in Minecraft

Create models that execute spatial actions

S

B: (puts down 1 orange)
A: now make a staircase with 2
stairs left and 2 right with orange

(@) (®) © (@

A: go to the middle and place an
orange block two spaces to the left

B: (puts down I orange)

B: (puts d 4
A: so it will look like a v G

B: (removes 1 orange, creating a B: (places 1 orange) B: (removes 1 orange, creating a B: (follows similar pattern to
floating section) floating block) complete the shape)
(O] ® (@) (h)

Figure 1: A sample sequence of human-human game states. The game starts with an empty grid and an initial
A instruction (a), which B executes in the first action sequence (b) by placing a single block. In (c), B begins
to execute the next A instruction given in (b). However, A interrupts B in (c), leading to two distinct B action
sequences: (b)—(c) (single block placement), and (c)—(h) (multiple placements and removals).

Jayannavar, P., Narayan-Chen, A., & Hockenmaier, J. (2020). Learning to execute instructions in a Minecraft
dialogue. In Proceedings of the 58th Meeting of the Association for Computational Linguistics (pp. 2589-2602).
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Situated Grounding in Human Robot Dialogue

The small white

blue object, next ﬂ T::Xlt)/g)et;uep

to a big object e
Robot’s Model Human'’s Model

' i 1 1 ! ., G
0 ' ! 1 1 Ny,
' | ' 1 ! ]
' ' | /
' : ' ' %
I . |

A
N " oY
Language generation H: ok, so the one in the corner is a blue cup @ - | le
T ——— R: not a cup, | see there is a square, it is blue ®
9t3 P H: alright, | will go with that, right under that is a p ®
yellow pepper o
m  Establish a Joint Perceptual Basis
. ; Type:Square | ObjectID: 0120
through language grounding Color: Blue must-link Type: ?
| mustnk _— Color: [218,198,87]
SpatialRelation: Under B-Box: [45,30]
graph matching Position: [650,70]
Type: Pepper
LU > | objectin: 0122
Eosttionsi 6" = arg max, f () || Type: apple
Color: [200,156,187]
B-Box: [40,72]
Position: [60,45]
Language Graph Vision Graph

Chai, J. Y., Fang, R,, Liu, C., & She, L. (2016).

Collaborative language grounding toward situated . . . .
human-robotdialggug. f\], Magaz?ne 37(4), 32-45. s Graph-Matching for Interpreting Referring Expressions
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Grounding - Multimodal Spatial Expressions

(1) Herege;z4 is the bus stop, a bit left of itjze;z;s) i 2 V‘/—»
church and right in front of that(ge;,4) is the hotel.  here s a smallred
: square, here is a

: yellow circle...

q [ ] Gesture processing

Figure 1: Providing a multimodal description (left) of @

scene (right). Figure 2: Multimodal system architecture.

= Interpreting multimodal spatial descriptions in route giving tasks.

= Gestures not only contribute information, but also help interpretations of speech
incrementally, due to its parallel nature.

Han, T., Kennington, C., & Schlangen, D. (2018). Placing Objects in Gesture Space: Toward
Real-Time Understanding of Spatial Descriptions. In AAAI18.
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Situated Grounding and Pointing Actions

Figure 1: A pick-and-place task requires a referential point-
ing action to the object (orange cube) at the initial position,
and a locating pointing action to a final placement position
(dotted cube). Such an action by a robot (in red) can also be
accompanied by verbal cues like “Put that there.”

= Pointing to something vs. somewhere

= Human subjects show greater flexibility in interpreting
the intent of referential pointing compared to locating
pointing, which needs to be more deliberate.

=0 #/
surface (.

- ertex angle (6
S
pointing =N " .
ray (r) 4, /Canlc section (P)
table

sampled

object iase iii

Figure 2: (A) Workspace setup showing the pointing cone
and the corresponding conic section on the table. (B) The
degrees-of-freedom considered for placement of the object
on the table. (C) Sampling policy to sample object poses
within the conic section.

' Cone(C)

Alikhani, M., Khalid, B., Shome, R., Mitash, C., Bekris, K. E., & Stone, M. (2020). That and There: Judging the
Intent of Pointing Actions with Robotic Arms. In AAAI (pp. 10343-10351).
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Spatial Reasoning and Situated Meaning

SITUATED MEANING IN A JOINT ACTIVITY

SON: Put it there (gesturing with co-attention)?
MOTHER: Yes, go down for about two inches.
MOTHER: OK, stop there. (co-attentional gaze)
SON: Okay. (stops action)

MOTHER: Now, start this one (pointing to another
cupcake).

Krishnaswamy, N. and Pustejovsky, J. (2020). Neurosymbolic Al for Situated Language Understanding. In
Annual Conference on Advances in Cognitive Systems (ACS). Cognitive Systems Foundation.

21



Situated Meaning and Common Ground

Agents mother, son

Shared goals baking, icing

Beliefs, desires, Mother knows how to ice, bake, etc.
intentions Mother is teaching son

Objects Mother, son, cupcakes, plate, knives,

pastry bag, icing, gloves
Shared perception | the objects on the table
Shared Space kitchen

Stalnaker R., “Common ground”, Linguistics and philosophy, vol. 25, no 5-6, p. 701-721, 2002

Clark H. H., Brennan S. E., “Grounding in communication”, Perspectives on socially shared cognition, vol.
13, p. 127-149, 1991.
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Embodiment and Situated Grounding

@ Task-oriented dialogues are embodied interactions between
agents, where language, gesture, gaze, and actions are
situated within a common ground shared by all agents in the
communication.

@ Situated semantic grounding assumes shared perception of
agents with co-attention over objects in a situated context,
with co-intention towards a common goal.

@ VoxWorld : a multimodal simulation framework for modeling
Embodied Human-Computer Interactions and communication
between agents engaged in a shared goal or task.

@ Embodied HCI and robot control in action.

Pustejovsky, J., & Krishnaswamy, N. (2020). Embodied Human-Computer Interactions through Situated Grounding. In
Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents.

R3



Situated Grounding in Dialogue

A non-verbal interaction between a human and IVA using gesture,
gaze, and action.

Figure: IVA Diana engaging in an embodied HCI with a human user.

Krishnaswamy, Nikhil, Pradyumna Narayana, Rahul Bangar, Kyeongmin Rim, Dhruva Patil,
David McNeely-White, Jaime Ruiz, Bruce Draper, Ross Beveridge, and James Pustejovsky.
"Diana's World: A Situated Multimodal Interactive Agent." In Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 09, pp. 13618-13619. 2020.
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Embodiment and Situated Grounding

Figure 1: Diana’s interactive setup within the real world (L) and
Diana’s environment (human inset in upper right) (R)

Pustejovsky, J., & Krishnaswamy, N. (2020). Embodied Human-Computer Interactions through Situated Grounding. In
Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents.
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HOI and Situated Grounding

ldentify requirements involved in developing a
semantics for referential grounding in a situated
context.

This models a native human capability , so we study
Human-human interactions ( HHI ) in multimodal
communication.

Modeling human-object interactions for communication
2 Object properties and behaviors
1 actions associated with objects



Spatial Semantics and Situated Grounding

e ldentifying the actions and consequences associated with
objects in the environment.

@ Encoding a multimodal expression contextualized to the
dynamics of the discourse

e Situated grounding: Capturing how multimodal expressions
are anchored, contextualized, and situated in context

_7



Spatial Properties of Objects

= Object size, shape, dimensionality, texture

= Orientation, frame of reference, facing (front/back)
= How we spatially interact with an object

= Space needed for Object function - affordance space
s Event space used for object function or purpose

Pustejovsky, J., & Krishnaswamy, N. (2016). VoxML: A Visualization Modeling Language. In Proceedings of the Tenth
International Conference on Language Resources and Evaluation (LREC'16).

Krishnaswamy, N., & Pustejovsky, J. (2016). VoxSim: A visual platform for modeling motion language. In Proceedings
of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations.
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Spatial Properties of Objects

@ Context of objects is described by their properties.

@ Object properties cannot be decoupled from the events they
facilitate.

o Affordances (Gibson, 1979)
o Qualia (Pustejovsky, 1995)

“He slid the cup across the table. Liquid spilled out.”

9



Reference Frames and Affordances

@ Hand-tool Interface: based on the agent's biomechanical and
morphological characteristics. For instance, a hammer is
graspable by a human adult but not by a baby. Thus, the
interface is centered on the agent.

@ Tool-object Interface: independent of the agent's / ;
characteristics. The relationship is centered on objects )
external to the agent and the interaction is made possible “1\{! “'/L/ et e
because of the compatibility between the characteristics of the \é\i S r—
tool and the object. /\/

L]
/

/ Tool-object
Tool-centered

Osiurak, F., Rossetti, Y., and Badets, A. (2017). What is an /__?
affordance? 40 years later. Neuroscience & Biobehavioral [:ﬁ
Reviews, 77, 403-417.

30



Affordance Space and Grasp Poses

Pustejovsky, J., Krishnaswamy, N., and Do, T. (2017). Object embodiment in a multimodal simulation.
In AAAI Spring Symposium: Interactive Multisensory Object Perception for Embodied Agents.
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Habitats and Affordances

Different Habitats for Object Use
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Top: Spoon allowing holding (left) and stirring (right).
Bottom: Khnife allowing spreading (left) and cutting (right)



VoxML: Visual Object Concept Modeling Language

@ Encodes afforded behaviors for each object
o Gibsonian: afforded by object structure (Gibson,1977,1979)
@ grasp, move, lift, etc.
o Telic: goal-directed, purpose-driven (Pustejovsky, 1995, 2013)

e drink from, read, etc.

@ Voxeme

e Object Geometry: Formal object characteristics in R3 space
e Habitat: Orientation, Situated context, Scaling
e Affordance Structure:

@ What can one do to it
@ What can one do with it
@ What does it enable

33



VoxML - cup

" cup
PRED = cup
e {TYPE = physobj, artifact]

HEAD = cylindroid[1]
COMPONENTS = surface, interior

TYPE = | CONCAVITY = concave
ROTATSYM = {Y
| REFLECTSYM = {XY,Y Z} |
CONSTR = {Y > X|Y > Z}
INTR = (21| UP = align(Y,Ey)
HABITAT = TOP - top(+Y)
| EXTR = (a1] uP = align(Y,€Ly) | |

Ay = Hpg) — [put(z, on([1]))]support([1], )
AFFORD.STR — | A2 = Hyg — [put(z,in([1]))]contain([1], z)

As = Hg) — [grasp(z, [1])]
A4 = Hpg — [roll(z, [1])]

_ [ SCALE = <agent |
HEHORIMERT = | SSOVABLE = trae |

34



VoxML for actions and relations

[ put
| PRED = put
LEX = | TYPE - transition_event]
[ HEAD - transition
A1 = x:agent
ARGS = | As = y:physobj
TYPE - A3 = z:location
E1 = grasp(z,y
BODY = | Ex = (while(hold(x,y), move(z,y))
Es = [at(y, z) — ungrasp(z,y)]
[ OnN
LEX = [ PRED = on |
[ CLASS = config ]
VALUE = EC
TYPE = A1 = x:3D
AR =
R lAz = y:3D
| CONSTR = y—HABITAT—INTR[align] | |

35



VoxML - grasp

[ grasp

LEX — [PRED — grasp ]

TYPE = transition_event

[ HEAD = transition
A1 = X:agent
A2 = y:physobj

_ BODY = [El = g'rasp(’l‘w’y) ] !

TYPE = | ARGS =

36



VoxML — Composition [grasp + cup]

= Continuation-passing style
semantics for composition

= Used within conventional
sentence structures

= Used between sentences in
discourse

= Used for gesture sequencing as
well

Krishnaswamy, N., & Pustejovsky, J. (2019). Multimodal Continuation-
style Architectures for Human-Robot Interaction. arXiv preprint
arXiv:1909.08161.
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QSRLib

Table 1: Description of supported qualitative spatial relation families

qualitative spatial relation families type num of relations / variations  kind of entities
Qualitative Distance Calculus distance user specified 2D points
Probabilistic Qualitative Distance Calculus  distance user specified 2D points
Cardinal Directions direction 9 2D rectangles
Moving or Stationary motion 2 2D points
Qualitative Trajectory Calculus motion B11:9, C21: 81 2D points
Rectangle/Block Algebra topology & direction  169/2197 2D/3D rectangles
Region Connection Calculus topology 2,4,5,8 2D rectangles
Ternary Point Configuration Calculus direction 25 2D points

Allen temporal layer

@ @
. spatial layer

— LS

objects layer

Figure 5: Example of a Qualitative Spatio-Temporal Activ-
; . . ) ) ity Graph (QSTAG) between a human and an object; each
Figure 1: Activity recognition in a table top setting. Dyadic spatial layer node encodes QSRs from two calculi: a QDC

QSR relations between detected objects/skeleton points can R
be computed (bottom right inset). ) P relation (touch/near) and a QTC 21 one ((+,0)/(0,0)).

. Gatsoulis, Yiannis, Muhannad Alomari, Chris Burbridge, Christian Dondrup, Paul Duckworth, Peter
Lightbody, Marc Hanheide, Nick Hawes, D. C. Hogg, and A. G. Cohn. "Qsrlib: a software library for
online acquisition of qualitative spatial relations from video." (2016).
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Gestures Generated in VoxWorld

Pustejovsky, J., Krishnaswamy, N., Beveridge, R., Ortega, F. R., Patil, D., Wang, H., & McNeely-White, D.
G. Interpreting and Generating Gestures with Embodied Human Computer Interactions, GENEA
Workshop, IVA20, 2020.
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Multimodal Dialogue

= Language and Gesture determine Situated Grounding
= “That block, move it there.”

Ak; ® kg.((that, Point,)(move, Move)) (Ars ® rg.(that, Point,)
40 (ks ® kg K. ® K. (ks @ kgrs ®@ 1))



Multimodal Dialogue

= Gesture sequence command

SINGLE MODALITY (GESTURE) IMPERATIVE

DIANA1: G = [points to the purple block]tl
DIANAj: G = [makes move gesture]tz
DIANA3: G = [points to the blue bIock] 3

Krishnaswamy, N., and Pustejovsky, J. (2018). Deictic Adaptation in a Virtual Environment. In German
Conference on Spatial Cognition (pp. 180-196). Springer, Cham.
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Spatial Reasoning and Affordance Learning

e Gibsonian/Telic affordances are associated with abstract
properties:

e spheres roll, sphere-like entities probably do too;

e small cups are graspable, small cylindroid-shaped objects
probably are too.

@ Similar objects have similar habitats/affordances:

@ This informs the way you can talk about items in context:
e Q: “What am | pointing at?”
e A: "l don't know, but it looks like {a ball/a container/etc.}

@ Train over a sample of 17 different objects: blocks,
KitchenWorld objects (apple, grape, banana, book, etc.)
@ Trained 200 dimensional affordance and habitat embeddings

using a Skip-Gram model, for 50,000 epochs with a window
size of 3:

o These embeddings serve as the inputs to the object prediction
architectures

@ Using the affordance embeddings in vector space, predict

ﬂ — which object they belong to: using a 7-layer MLP; a 4-layer
i Ll - CNN with 1D convolutions
{ ¥
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Affordance Embeddmgs

Krishnaswam

Situated grounding is particularly useful for transfer learning,
because similar concepts often exist in similar situations (cf.
analogical generalization, a la Forbus et al. (2017)).

o e.g., "Build an X out of these,” “Put all those in that X."

Associate affordances with abstract properties—spheres roll,
sphere-like entities probably do too.

This informs the way you can talk about items (in real or
virtual situations).

Q: “What am | pointing at?” A: “l don't know, but it looks
like [a container, something that rolls, etc.]"

Similar objects have similar habitats/affordances.
What happens when Diana encounters a new object?



Affordance Embeddings

Exploit the correlations between habitats and affordances over
known objects, and map those correspondences to novel
objects

Given: Object + A1 + Ax + _____ + Ag, predict As
Goal: “Spheres roll. An apple is spherical. Apples probably
roll.”

17 distinct VoxML objects (~22 distinct affordance
encodings):
o e.g., H) = [uP = align(Y,Ey), TOP = top(+Y)], Hpz) -
[ put(x, in(this))]contain(this, x);
Train 200-dimensional habitat or affordance embeddings using
a Skip-Gram model;

Represent objects as averaged habitat or affordance vectors.



Affordance Embeddings

@ 2 architectures: 7-layer MLP and 4-layer CNN w/ 1D
convolutions

@ Evaluate against a ground truth of k-means clustered objects
derived from human annotators

@ Achieve ~80% accuracy with the predicted object clustering
with the ground-truth object

o ~40% of the time the predicted object always clusters with the
ground truth in 5 randomized trials

Model % predictions in | % predictions always
correct cluster in correct cluster
MLP (Habitats) 78.82% 27.06%
MLP (Affordances) 84.71% 38.82%
CNN (Habitats) 78.82% 27.06%
CNN (Affordances) 81.18% 40.00%




Affordance Embeddings

Tests on individual objects (plate):

MLP-H MLP-A

Model CNN-H CNN-A
Predicted book, cup, bowl,| cup, bottle,
objects bottle apple book cup, bottle

e Habitat-based model typically better at capturing common
behaviors (e.g., grasping), affordance-based model better at
object-specific behaviors (e.g., rolling)



Example of Learning

- http://www.voxicon.net/wp-content/uploads/2020/07/DianaAffordanceTransferLearning.mp4



http://www.voxicon.net/wp-content/uploads/2020/07/DianaAffordanceTransferLearning.mp4

Data Augmentation

Captions Don't Describe Human-Object Interactions

Neither do conventional semantic representations

“Woman drinking coffee.”

(1) a. drink(w,c)
b. IxJy[woman(x) A coffee(y) A drink(x,y)]
c. EVENT(drink) A AGENT(woman) A PATIENT( coffee)



Data Augmentation

What the Caption Leaves Out

Dense Paraphrase

@ A woman drinking coffee.

@ A upright seated woman is holding in her hand, a cup filled
with coffee while she drinks it.

@ The cup is upright so the container portion (inside) is able to
hold coffee.

@ She is holding the cup by an attached handle.

@ The cup is tilted towards her and touches her partially open
mouth, in order to allow drinking.



Data Augmentation

Captions Don't Describe Human-Object Interactions

“A man working at a desk.”



Data Augmentation

What the Caption Leaves Out

@ A man working at a desk.

@ A upright man is seated in a chair, typing with both hands on
the keyboard of a laptop, which is on the top surface of a
table.

@ The chair he is seated in is close enough to the table for him
to reach the keyboard.

@ The laptop is open, with the keyboard exposed flat and the
screen facing the man.

@ The man is facing the computer screen and keyboard and the
desk.



Situated Communications

m Multimodal Situated Grounding — co-perception and co-attention are
necessary to understand deixis and relative spatial expressions

Put the big one right here.
| want the cookie on the left behind the donut.
Show me a coffee shop around ... here.
m Understanding Events and their Results — actions change the spatial
nature of the environment
Mary opened the door and left the room.
Put the book in the bag. Take the bag to the car.
Remove the seeds and cut into thin strips, then brown in oil.
m Appreciation of spatial properties of objects - intrinsic vs. relative
Frame of Reference

The tree behind the bench
The bench in front of the tree

5:



Paraphrase Grammars

Non-derivational Transformation Grammar

@ Linguistic syntagmatic surface form variation is modeled in

terms of transformations or sets of constructional variants
(Harris, 1957, Hiz, 1964, Cullicover, 1968, Smaby, 1971)

@ Formally, a paraphrase is a relation between two lexical,
phrasal, or sentential expressions, E; and E;, where meaning is
preserved (Smaby, 1971).

@ Machine Translation adopted rule-based paraphrasing in the
1980s

o Statistical MT adopted it in 2013 (Bhagat and Hovy, 2013)
o Neural MT and QA exploit it (Weston et al, 2021)



Type-driven Dense Paraphrasing

Pustejovsky (1995

(1) a. Mary likes to watch movies.
. Mary likes watching movies.

. Mary likes movies.

b
C
d. Mary likes (for) John to watch movies with her.
e. Mary likes that John watches movies with her.
£

. Mary likes it that John watches movies with her.

(2) a. Mary enjoys watching movies.
b. Mary enjoys movies.



Canonical
Syntactic
Form -

Structural
Motifs

For any semantic type, 7, there is a unique canonical syntactic form (csf)
that expresses this type as a syntactic object, X'.
(3) For every type 7 in the set of semantic types, there is a function,
canonical syntactic form (csf), such that csf(7) = X', except for
a. when 7 =T, or

b. when 7 =1,
in which case csf is undefined.

YJ where csflo) = Y/, is substitutable for the csf of a type 7 only if this
type is fully recoverable from licensed semantic operations on o.

(4) [7]
Coerce(o1) Coerce(o?)

l Canonical Form
Zk Xi Yf’ [7-]



CSF (Motifs) for these Semantic Types

T

[event] [ind] [propllfactive]

VP[+PRG] NP S[+INF]S[+TNS]



Decontextualization

Choi et al (2021

Decontextualization: Given a sentence-context pair (S, C), a
sentence S’ is a valid decontextualization of s if: (1) the sentence
S’ is interpretable in the empty context; and (2) the
truth-conditional meaning of S’ in the empty context is the same
as the truth-conditional meaning of S in context C.

@ Focuses on enriching text through anaphora resolution and
knowledge base augmentation, such as Wikipedia.



Dense Paraphrasing

Pustejovsky et al (2021), Tu et al (2022)

Dense Paraphrasing: Given the pair, (S, P), where S is a source
expression, and P is an expression, we say P is a valid Dense
Paraphrase of S if: P is an expression (lexeme, phrase, sentence)
that eliminates any contextual ambiguity that may be present in S,
but that also makes explicit any underlying semantics that is not
otherwise expressed in the economy of sentence structure, e.g.,
default or hidden arguments, dropped objects or adjuncts. P is
both meaning preserving (consistent) and ampliative (informative)
with respect to S.



Frame Saturation

Frame Saturation: recovering all logical hidden arguments to a
predicate or function.

@ Drop argument: A drop argument is an argument to a
predicate that has been elided or left unexpressed in the
syntax. Such elisions occur when the antecedent has been
mentioned in a previous sentence and can be recovered from
the context in the document.

@ Shadow argument: A shadow argument is semantically
incorporated in the meaning of the event predicate itself; e.g.,
an implicit tool or ingredient that is not mentioned but
presupposed

PlaCing Lexical Unit Index

Definition:

Generally without overall (translational) motion, an places a at a location, the €22, which is profiled. In this frame, the [¥ilgeas is under the control of the
2V:01/ @1IEE at the time of its arrival at the €Lzl
Davic on the floor]
This frame differs from Filling in that it focuses on the [Jilges rather than the effect on the [€44 entity. It differs from Removing in focusing on the €% rather than the
of motion for the



Frame Saturation — filling in missing roles

@ Drop Arguments
o Combine sugar and water. Mix [...] until dissolved.
e —> Mix sugar and water until dissolved.
o Chop the onion. Sauté [...] until browned.
e = Sauté the onion until browned.

@ Shadow Arguments

o Stir [...] until firm.

e — Stir with a spoon until firm.
o Bake [...] at 350.

e — Bake in an oven at 350.



Dense Paraphrasing with situated grounding

ggggg

eeeee

The milk goes into the refrigerator.




Dense Paraphrasing

Subevent structure

@ Expose the subevent structure of the lexical predicate

e arrive is textually expressed as two subevents
e not_at_loc(x,y) and at_loc(x,y)

@ Dynamic tracking of event consequences

e Recovering Entity Properties from Event Structure
e chop applied to onion brings about chopped onions



GL Event Structure

Im and Pustejovsky (2010

@ Building Subevent Structures from Text

€1 €2

kill_act(x,y) ‘
—~dead(w) dead(w)

P P

oS

(10) kill in John killed the plant
sel: pre-state: not_dead(plant)
se2: process: killing(john,plant)
se3: post-state: dead(plant)



Generative Lexicon AMR (GLAMR)

s Tuetal (2024) COLING-LREC

e A new semantic representation extending AMR with
Generative Lexicon event structure

e Propose a pipeline for automatic augmentation of AMR to
GLAMR graphs

e Create a GLAMR dataset from procedural texts, e.g., cooking
recipes

e Evaluate with baselines for converting text to GLAMR and
GLAMR to text



Generic GLAMR graph

______________________________________________



Background

Abstract Meaning Representation (AMR)

e A semantic meaning representation that can encode the
meaning of the texts in a structured way

e Able to go beyond sentences (e.g., DocAMR, UMR, etc)

e Flexible to be extended with other semantic information (e.g.,
dialogue, gesture, action, etc)



Background

Abstract Meaning Representation (AMR)
Sentence: Slice the onion.

slice-01

:mode :ARGO :ARG1

imperative you Onion

https://nlp.uniromal.it/spring/

(z0 / slice-01
:mode imperative
:ARGO (z1 / you)
:ARG1 (z2 / Onion))


https://nlp.uniroma1.it/spring/

Background

Generative Lexicon - VerbNet (GL-VN)

e VerbNet provides semantic representations for a wide
coverage of verb classes

e GL-VerbNet updates VN with representations for the GL event
structure



Background

Generative Lexicon - VerbNet (GL-VN)

GL event structure of the VN class pour-9.5

NP V NP PP.destination

NP V NP ADVP
NP V PP.destination
NP V NP PPinitial_location PP.destination

NP V PPinitial_location PP.destination

EXAMPLE:

Tamara poured water into the bowl.

SHOW DEPENDENCY PARSE TREE

SYNTAX:

Agent VERB Theme { PREP } Destination

SEMANTICS:

HAS_LOCATION( e1, Theme, ?Initial_Location )
DO(e2, Agent)

MOTION( €3, Theme, Trajectory )

- HAS_LOCATION( €3, Theme, ?Initial_Location )
CAUSE(e2, &3)

HAS_LOCATION( e4, Theme, Destination )

FORCE DYNAMICS:

Volitional Apply FD representation



Background

Coreference under Transformation Labeling (CUTL) Dataset

e Contain the annotations of entities, their anaphoric and
coreference relations, and the accompanying event semantics

on the cooking recipes

e Annotate each event as an I/O process with the explicit and
implicit arguments, as well as the anaphoric relations between
the entities



Mapping from GL-VN to GLAMR

Pour them into the bowl.

(p / pour-01
:ARGO (y / you)

e :event-structure linksthe predicate to the .ARGL (t / them)
root of subevents as the direct child of the :ARG3 (b / bowl)
. :event-structure (s / subevents
predicate . T
e GL event structure is portable that can be added to :ACTION p)
.. . S .
or detached from original AMR graphs -ElTHES; /t fad. lecatlan

:INITIAL_LOC ' N/A)

:E3 (a / and
:opl Y (m / motion
:THEME t
:TRAJECTORY N/A)
:op2 (h / has_location
:polarity - -
:THEME t
:INITIAL_LOC N/A))
:E4 (hl / has_location
:THEME t
:DESTINATION b)
:mode imperative )



Mapping from GL-VN to GLAMR

Pour them into the bowl.

(p / pour-01
e NewAMRrolesEl, E2, . . . areaddedto ;iigf g f Zizl)n)
represent the subevent indices :ARG3 (b / bowl)
e The indices are aligned with the GL event structure ’e‘_’zgtf_s’(:;uftsge i/ GUESVEnES
of the predicate encoded in VN :ACTION p)
[§§E§ (h / has_location
TTHEME t
: INITIAL_LOC = N/A)
(a / and
:opl Y (m / motion
:THEME t
: TRAJECTORY N/A)
:op2 (h / has_location
:polarity - -
:THEME t
:INITIAL_LOC N/A))
[Ezzl(hl / has_location
:THEME t
:DESTINATION b)
:mode imperative )




Mapping from GL-VN to GLAMR

Pour them into the bowl.

(p / pour-01
:ARGO (y / you)
:ARG1l (t / them)

The concepts and variables inside the subevent are

I:ARG3 (b / bowl”

synced with the outside through reentrance

revent-structure (s / subevents

:E0 ' (d / do
:ACTION p)

:E1 ° (h / has_location
:THEME t
:INITIAL_LOC ' N/A)

:E3 (a / and
:opl Y (m / motion

:THEME t

:TRAJECTORY N/A)
:op2 (h / has_location

:polarity - -

:THEME t

:INITIAL_LOC N/A))

:E4 (hl / has_location
: THEME t
[: DESTINATION b)

:mode imperative )




Mapping from GL-VN to GLAMR

Pour them into the bowl.

(p / pour-01
:ARGO (y / you)

: ACTION represent the action that has been ‘ARG1 (t / them)
:ARG3 (b / bowl)

performed on the objects during the event time
tevent-structure (s / subevents

The concept is the verb lemma of the predicate B0 T (2 / do
:ACTION p)
:E1 7 (h / has_location
:THEME t
:INITIAL_LOC = N/A)
:E3 (a / and
:opl Y (m / motion
: THEME t
: TRAJECTORY N/A)
:op2 (h / has_location
:polarity - -
: THEME t
:INITIAL_LOC N/A))
:E4 (hl / has_location
:THEME t
:DESTINATION b)
:mode imperative )




Mapping from GL-VN to GLAMR

Pour them into the bowl.

(p / pour-01
:ARGO (y / you)

® Subevents with the same temporal index are .ARGL (t / them)
stacked with the : op roles :ARG3 (b / bowl)
e Negation is represented with the attribute ’e‘_’ggtis’(:;u/ct;‘e (8 / subevents
:polarity :ACTION p)
:E1 ° (h / has_location
:THEME t

:INITIAL_LOC ' N/A)
:E3 (a / and
:opl Y (m / motion
:THEME t
:TRAJECTORY N/A)
:op2 (h / has_location
:polarity - -
TTHEME €
:INITIAL_LOC N/A))
:E4 (hl / has_location
:THEME t
:DESTINATION b)
:mode imperative )




GLAMR Dataset

Subevent frequency

Sube. Names Count | Sube. Roles Count
[-]has_loc. 636 (26%) | Patient 2038 (38%)
[-]cooked 286 (11%) | Theme 1131 (21%)
[-]MI_state 274 (11%) | V_Final_State 378 (7%)
[-]together 212 (9%) | Initial_Loc. 371 (7%)
motion 211 (9%) | V_State 274 (5%)




GLAMR Event Enrichment

Put the onions in the pan.

put-01

:ARGO :ARG1 :ARG2 :event-structure

she onion pan subevents

do has_location has_location has_location

:ACTION < THEME INITIAL_LOC :polarity < THEME INITIAL_LOC :THEME :DESTINATION

put onion unknown - onion unknown onion pan



GLAMR Event Enrichment

ﬂy‘-(]'l
:ARG1 source :destination :event-structure
plane Boston Denver subevents
E@ E1 :E2 E3
do has_location has_location has_location
:ACTION :THEME JINITIAL_LOC :polarity :THEME INITIAL_LOC :THEME :DESTINATION

fly plane unknown - plane unknown plane Boston



Multi-Modal Dense Paraphrasing

e Extend the DP to encode the multimodal input into Machine

Readable Paraphrases (MRP)
e Apply LLMs to decode MRP into Human Readable Paraphrases

for downstream tasks

e HRP encodes the potential non-verbal information and
situated grounding from the interaction between participants
and the objects

e Apply MMDP on the Weights Task Dataset for the common
ground tracking problem



Weights Task Dataset

e Contains ten videos, in which groups of three were asked to

determine the weights of five blocks using a balance scale

Participants communicated with each other using multiple

modalities, including language, gesture, gaze, and action

Contains common ground annotation on the dialogue where

participants reach the common grounds (agree on the

statements on the weights of the tasks)

Multimodal interaction
e Speech

Gesture

Gaze

Action

Posture




Situated Multimodal Coreference

i

‘ 1
3 y SR .
; /1
i | @

R

@ Situated Grounding for Coreference

e It weighs 10 grams. = The red block weighs 10 grams.
o Point_Leftgesture = The yellow block

@ Epistemic Framing: Express the epistemic attitude towards a
sentence or action;
o Speaker A: It weighs 10 grams. = | think that it weighs 10

grams.
e Maryacgent put the block on the scale. = Mary believes that

she put the block on the scale.



Dense Paraphrasing through Multimodal Alignment

Original Utterance Dense Paraphrase
cauat01 block
s vz MG1-of  ord
— 10 02 ordinakenty
’ )
tht . 0

Figure: AMR of: That one is 10.  Figure: AMR of: Red block is 10.



Encodings from the MMDP

m Utterance: “Try this one”

m Aligned Video frame with gesture, gaze, and
speech




Encodings from the MMDP

m Utterance: “Try this one”

m Aligned Video frame with gesture, gaze, and MRP
speech {Pl-utterance: try this one,

Pl-gesture: point
(blue block,others)}

HRP
Participant 1 pointed at
the blue block and
commented to others that
they should try the blue
block.




MMDP on Common Ground Tracking

The weight task is about 3 participants /" Participant 1 utterance:
using a scale [.. ... ... ] So that one is probably ten grams too
(TeskDesampion }-- You task is to generate sentences that Pa“";‘i’g;'t 2 "]'Oclt'm]: leftscale))
describe who said what and who did what. ! Put 15 1ue_b ock, [iettscale
| K Participant 1 gesture:
/Weights Task Dialogue\ ," point (blue block, (other participants))
[ Dlalogue Segment 1 | [Multi-modal Machine Readable Paraphrase] I Participant 2 placed the blue block on the left side of
Common Ground QA Lol — \l: @ the scale. Participant 1 pointed at the blue block and
\ J ,+" Turn 1 L3
Human Readable Paraphrase - commented to others that the blue block probably @
g N L e S :
Dialogue Segment2 | | = l e weighs ten grams as well.
Common Ground QA Q [ )
\, J | .
--------- | ( ) . They concluded that red block is 10, blue block is 10,
p \ “\Tun2.N| .~ green block is 20. [Prediction from last segment]
Dialogue Segment N C ) After the discussion, Do they update or reach a
Common Ground QA B T [ . conclusion on the weight of the blocks?
\ J % e
[ Common Ground Question ]
| " , {"red": 10, "blue": 10,

k Generated Answers | T==-o_ R i SR U ik e @



Multimodal Large Language Models (MLLMs)

KOSMOQS-2 :

Q

Combines multiple modes of input and output, users can use their voice to
give commands, gestures to navigate through menus, touch to interact with
virtual objects, and gaze to control certain functions.

Peng, Zhiliang, et al. "Kosmos-2: Grounding multimodal large language models to the
world." arXiv preprint arXiv:2306.14824 (2023).

GLaMM: Pixel Grounding Large Multimodal Model.

Q

Key feature is pixel grounding, which involves associating specific pixels in
an image with their corresponding textual concepts.

Global image encoder, a region encoder, a language-to-language model, a
grounding image encoder, and a pixel decoder.

Rasheed et al (2024). Glamm: Pixel grounding large multimodal model. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition



Vision Language Action Models (VLA)

Coined by RT-2 (Brohan et al, 2023) — focuses on
embodied Al for human-robot interaction

Taxonomy of VLA Models

Pretrained visual | CLIP [1]; R3M [2]; MVP [3]; VIP [4]; VC-1 [5];
representation §I1I-A1 Voltron [6]; RPT [7]; GR-1 [8]; SpawnNet [9]
Pretraining Dynamics

T SIEA Learning §II-A2 — Vi-PRoM [10]; MIDAS [11]; SMART [12]; MaskDP [13]; PACT [14]; VPT [15]
Dreamer [16]; MWM [17]; Iso-Dream [18]; TWM

World Model §III-A3 — [19]: IRTS [20]: SWIM [21]: DECKARD [22]

N;ﬁf; IM —  CLIPort [23]; BC-Z [24]; MCIL [25]; HULC [26]; UniPi [27]
Language Instruction TFM-based ‘_ Language costs [28]; Interactive Language [29]; Hiveformer [30];
§III-B1; §III-B2; §III-B3 §III-B2 PerAct [31]; Gato [32]; RT-1 [33]; Q-Transformer [34]; SUDD [35]
LLM-based | RT-2 [36]; RT-X [37]; RT-H [38];
§I1I-B3 RoboFlamingo [39]; VoxPoser [40]
Multi-modal [41]; [42];
Instruction §III-B4 ]7 VIMA [41}; MOO [42]; Octo [43]
* Goal-state b o2 T .
Instruction §IIL-B5 ]7 RoboCat [44]; RT-Trajectory [45]; Diffusion policy [46]

SayCan [47]; LID [48]; Translated (LM) [49]; (SL)3

N — [50]; EmbodiedGPT [51]; PALM-E [52]; LEO [53]

| [ Task Planner |

| §IIL-C | ‘ Language-based §III-C2 }— Inner Monologue [54]; LLM-Planner [55]; Socratic Models [56]

ProgPrompt [57]; ChatGPT for Robotics [58]; Code
\
Code-based §II-C3  j— as policies [59]; DEPS [60]; ConceptGraphs [61]




Vision Language Action Models (VLA)

ResNet ViT SAM Dreamer R3M MVP VC-1 TWM MIDAS GR-1
2015 2020 2023 2020 2022 2022 2023 2023 2023 2023
Computer Vision
= Pioneering Time Adapt MAE A Transformer- Inverse Large-scale
world model cc;ntra§tige to li)o\?lgtic ctorél}?r?heps:ye:g based (\imirld pdy:lar_nipsg videtq plis‘c/l'i{:ﬁon
ViLBERT CLIP LLaV A earnin stug l;)v;);ls in; mode retrainin; or

2019 2021 2023
GRU Transformer CLIPort BC-Z RT-1 VIMA VoxPoser RT-2 Octo

2014 2017 2021 2021 2022 2022 2023 2023 2023

2019 2022 CllPwth  goomiton hascd - PORELMO0  Prmonn  comirol oy, basdvid,

h GPT Tli\?ntsvgorﬁer predates RT-1 cl;)nl'gn})]l addtth;i ’lgl;ility planning tco:'}l;e[(i t]tl:" n‘ljod_ug]ar
BERT C at etworl 011C! 0 ] erm, esign

Inner ChatGPT

DQN PRO DT SayCan  Monologue PaLM-E CaP for Robotics
2015 2017 2021 2022 2022 2023 2023 2023
2016 2018 e Vil brexes < il o B e
affordance fusion model fusion
AlphaGO Dactyl

Figure 2: A brief timeline traces the evolution from unimodal models to multimodal models, laying the groundwork for the
introduction of VLA models. Key advancements in computer vision (blue) include ResNet [85], ViT [86], and SAM [87].
Seminal works in natural language processing (orange) encompass GRU [88], Transformer [66], BERT [89], ChatGPT [62],
etc. Reinforcement learning (green) has seen notable contributions from DQN [90], AlphaGo [91], PPO [92], Dactyl [93], and

DT [94]. Vision-language models have emerged as a critical category of multimodal models, exemplified by ViLBERT [95],
CLIP [1], and LLaVA_[96]. The three main directions in VLA are: pretraining, control policy, and task planner.



Hierarchical Robot Policy

Reinforcement learning has seen a shift towards
employing Transformers to model the Markov
Decision Process as autoregressive sequential data.

Cleantheroom 2

!

High-level Task Planner ]
!

© 1. Pick up the toy car

2. Move to the coffee table

3. Put it near the camera

4. ...

/)
[ Low-level Control Policy ]

1
g; ATranslation
ARotation

= 3
-

Figure 3: Illustration of a hierarchical robot policy comprising
a high-level task planner and a low-level control policy. The
high-level task planner generates a plan based on the user
instruction, which is then executed step by step by the low-
level control policy.



VLA Architectures

Action Action Action
Key, Value  Action Action .
Decoder Decoder Action Decoder
! z 1 ! !
Language Vision Language g, Vision Language Vision
Encoder Enc?der Encoder £  Encoder Encoder Enc?der
1 t e 1 1
Instruction State Instruction State Instruction State
(a) Cross-attention (b) FiLM (c) Concatenation

Figure 4: The three most common architectures of low-level control policies are characterized by their vision-language fusion
methods. Some Transformer action decoders utilize cross-attention to condition on the instruction. FiLM layers are employed
to fuse language and vision early in RT-1-based models. Concatenation is the prevailing method of vision-language fusion for
Transformer action decoders.

Task: Clean the room

Objects: Object Detector
Next step?
v
LLM
7
Pick up the toy car Control Policy

(a) Language-based

Task: Clean the room
Available APls: detect_objects(), pick() ...

¥
LLM
* .
objects = Object Detector
for obj in objects:
obj Control Policy

(b) Code-based

Figure 5: Different approaches to connect LLM to multi-modal
modules in high-level task planner.



RT-2 — Google DeepMind

Represent robot actions as another language, which can be cast
into text tokens and trained together with Internet-scale vision-

language datasets.

Internet-Scale VQA + Robot Action Data

Q: What is happening
in the image?

A grey donkey walks
down the street.

Q: Que puis-je faire
avec ces objets?

Faire cuire un
gateau.

Q: What should the
robot do to <task>?

A Rotation = [10°, 25°, -7°)

a4 ‘ A Translation = [0.1, -0.2, O]J

Co-Fine-Tune

Vision-Language-
Action Models for
Robot Control

RT-2

)

|

Deploy

Closed-Loop Robot Control

Put the strawberry into Pick the nearly falling
the correct bowl bag

Pick object that is

different




RT-2 — Google DeepMind

During inference, the text tokens are de-tokenized into robot actions, enabling
closed loop control. This allows us to leverage the backbone and pretraining of
vision-language models in learning robotic policies, transferring some of their
generalization, semantic understanding, and reasoning to robotic control.

e a

Q: What should RT-2

the robot do to
2A: L ¥ OO

SO0

AT (0.1, -0.2, 0]
AR (10°, 25°, -7°]

v [
[ A: = 132 114 128 5 25 156 } >
De-tokenize L

Robot action



RT-2 — Google DeepMind

Each task required understanding visual-semantic concepts and the ability to perform
robotic control to operate on these concepts. Commands such as “pick up the bag about to
fall off the table” or “move banana to the sum of two plus one” —where the robot is asked
to perform a manipulation task on objects or scenarios never seen in the robotic data —
required knowledge translated from web-based data to operate.

put strawberry pick up the bag

o move apple to . place orange in

into the correct about to fall Do pick robot P
bowl off the table ee g

move redbull can move soccer ball move banana to move cup to the pick animal with
to H to basketball Germany wine bottle different colour

move banana to
the sum of two pick land animal
plus one

move coke can to move coke can to move bag to
Taylor Swift X Google




RT-2 — Google DeepMind

Affordance-like behavior is adaptive and transferable.




Situated Grounding -Future Research

Integration of multimodal datasets, together with
uniform encoding as textual form (linguistic dense
paraphrasing) promises to provide additional training
data for new modalities and context:

2 Situational dialogue variables
2 Environmental states

1 Epistemic states of agents
a2 Other common ground knowledge



