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● In what follows, focus on how spatial language could be 
understood in a way humans do

● Illustrated with neural network approaches that model 
distributed representations 
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• Through grounding of language in visual perceptual world
• Through imagination of language in visual perceptual world
• Though reasoning in a geometric 2D or 3D space

=> Inspiration source for processing spatial language

• Motivated by many practical applications

Human Spatial Cognition:  Realization

Aflalo, T. N. & Graziano, M. S. A. (2008). Four-dimensional spatial reasoning in humans. Journal of Experimental 
Psychology: Human Perception and Performance, 34(5), 1066–1077.
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• In antiquity the study of space emerged among the ancient Babylonians and 
Greeks and led to Euclidean geometry

• The next breakthrough was probably the development of analytic geometry 
by René Descartes and the projective geometry by Girard  Desargues in the 
17th century

• In the 19th century non-Euclidean geometries were developed extending the 
concept of space beyond what could be intuited through everyday 
perception

• Today neuroscientist John O'Keefe contributed pioneering work on 
mammalian spatial cognition: three-dimensional Euclidean construction is 
inherent to the human nervous system

• The human experience of space includes knowledge relating to size, shape, 
location and distribution of entities in a 3D environment

Study of space 

Vyvyan Evans & Paul Anthony Chilton (2010). Language, Cognition and Space: The State of the Art and New 
Directions. Equinox. 4



Implicit versus explicit spatial language

• Focus on spatial understanding of language and representing language 
with spatial templates =  regions of acceptability of two objects under a
spatial relationship

• Prior work restricts spatial templates to language that explicitly uses
spatial cues (e.g., “glass on table”) 

• We extend this concept to implicit spatial language, i.e., those 
relationships (generally actions) for which the spatial arrangement of the 
objects is only implicitly implied (e.g., “man riding horse”) => requires 
significant commonsense spatial understanding

Logan, G. D., & Sadler, D. D. (1996). A computational analysis of the apprehension of spatial relations. In P. Bloom, M. A. 
Peterson, L. Nadel, & M. F. Garrett (Eds.), Language, Speech, and Communication:  Language and Space (p. 493–529). 
The MIT Press.

Reinhard Moratz &Thora Tenbrink (2006). Spatial reference in linguistic human-robot interaction: Iterative, empirically 
supported development of a model of projective relations. Spatial Cognition and Computation, 6(1), 63–106. 
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waiting on the 
stairs

up on the 
right

Implicit versus explicit spatial language

6



A girl rides a horse

• Where is the horse located, where is the girl located in relation to the horse?

• Can we build suitable representations in the physical space that capture 
this knowledge and potentially make inferences with it?

Implicit versus explicit spatial language
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Implicit versus explicit spatial language

Depending on the context, spatial language might have different meaning 
in terms of targeted geometry

The distance between the man and the 
motorcycle is usually much smaller in a 
city environment compared to a highway 
environment
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Implicit spatial information - Dynamics

• Spatio-temporal change is encoded in verbs
• Pre-conditions of an action: 

• “Shut the door!” door is in open position
• “Jan arrived in Prague.” Jan is not in Prague

• Post-conditions of an action:
• “Shut the door!” door is in closed position
• “Jan arrived in Prague.” Jan is now in Prague

• Physical consequences of actions  

Not treated in this tutorial: but interesting research topics
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Distributed representations

• Current neural network models create distributed representations

• Geoffrey Hinton, James L. McClelland and David Everett Rumelhart (1986): 
“Each entity is represented by a pattern of activity distributed over many 
computing elements, and each computing element is involved in representing 
many different entities.”

• Each concept is represented by many neurons
• Each neuron participates in the representation of many concepts

⇔ Localist representations: one neuron or node is dedicated for each 
entity/thing
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Distributed     ⇔ Symbolic representations

Have the advantage:

• To be robust in processing tasks
• To be able to capture context
• Easier to scale up
• More useful for connecting to 

neuroscience
• Better for perceptual problems
• ...

Have the advantage:

• Easier to explain to humans
• Easier to code
• Better for abstract concepts
• Used in communication with humans
• ...

Henry Lieberman Course MIT
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Visualizing language content

• It is well-known that humans "imagine" language content in a visual space
• It is well-known that humans reason in spatial visual space
• How to predict the spatial configurations and location of objects, actions, and 

their attributes in a 2D or 3D space? 

= test of how well does the system understands spatial language 
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Visualizing language content

• This work has potential for real-time language understanding in a visual 
context: 

• Language communication to robots, machines, self-driving cars, …
• Translation of spatial language to 2D or 3D space opens possibilities of fast 

quantitative reasoning in such a space, which can complement qualitative 
symbolic representations and reasoning

• This work is a step towards opening the black box of neural models applied to 
language processing by visualizing the interpreted content
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Visualizing the location of an object

• We propose the task of:
• Given a structured text input of the form (Subject, Relationship, Object) = 

(S,R,O)
• Predict the 2D relative spatial arrangement of two objects (output)

• Train the task in a supervised setting:
• Training set of image-text pairs, where the size and location of bounding 

boxes of objects in images serve as ground truth
• = a spatial  “question-answering" task where the question consists in a spatial 

commonsense query such as where is the “man" located with respect to a 
“horse" when a “man" is “feeding" the “horse"?

• The answer is a 2D  “imagined” representation in contrast with a 
sentence/word as typically done in question-answering tasks

Guillem Collell & Marie-Francine Moens (2018). Learning representations specialized in spatial knowledge: Leveraging 
language and vision. Transactions of the Association for Computational Linguistics (TACL), 6, 133-144.
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Simple feedforward neural network

Triplet of words, 
coordinates of subject

Word embeddings to 
generalize over unseen words

Loss: mean squared error

Guillem Collell, Luc Van Gool & Marie-Francine Moens (2018). 
Acquiring common sense spatial knowledge through implicit spatial 
templates. In Proceedings of the Thirty-Second AAAI Conference on 
Artificial Intelligence (AAAI 2018) (pp. 6765-6772). AAAI.
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Visualizing the location of an object

Quantitative evaluation: 10-fold cross-validation and results averaged over 
the 10 folds

EMB: Glove embeddings as input

RND: Random embeddings as input

1H: 1-hot encodings as input
Ctrl: control method that outputs 
random normal predictions

Visual Genome data set: 108K images with 
1,5M human-annotated (Subject, 
Relationship, Object) instances with 
bounding boxes for Subject and Object
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Visualizing the location of an object

Qualitative evaluation

Guillem Collell & Marie-Francine Moens (2017). Learning Visually Grounded Common Sense Spatial Knowledge for Implicit 
Spatial Language. In Proceedings of the 13th International Symposium on Commonsense Reasoning, University College London. CEUR. 
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Visualizing the location of an object

Model: Initialized with random 
word embeddings

Model: Initialized with distributional 
word embeddings

Qualitative evaluation
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Text to scene translation

Fuwen Tan, Song Feng & Vincente Ordonez (2018). Text2Scene: Generating compositional scenes from textual descriptions. 
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).

• Attention based object decoder: 
• Outputs the likelihood scores of all possible 

objects in the object vocabulary 𝒱
• Uses the recurrent scene state ℎ$%, text 

features ℎ&', 𝑥& , and the previously 
predicted object 𝑜$+,

• Attention based attribute decoder
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More details

𝑢$. = AvgPooling Ψ. ℎ$%

𝑐$. = Φ. [𝑢$.; 𝑜$+,], ℎ&', 𝑥&

𝑃 𝑜$ ∝ Θ.([𝑢$.; 𝑜$+,; 𝑐$.])

Ψ. = CNN	with	spatial	attention	on	ℎ$% to	collect	the	spatial	context	
about	the	objects	already	added;	attended	spatial	features	are	then	
fused	by	average	pooling	forming	vector	𝑢$.

Φ. =	text-based	attention	module,	which	uses	[𝑢$.; 𝑜$+,]	to	attend
to the language content ℎ&', 𝑥& resulting in context vector 𝑐$.

Θ.=	a	two-layer	perceptron	that	predicts	the	likelihood	of	the	next
object from the concatenation of 𝑢$., 𝑜$+,, and 𝑐$. using a softmax 
function

Text to scene translation

Fuwen Tan, Song Feng & Vincente Ordonez (2018). Text2Scene: Generating compositional scenes from textual descriptions. 
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).

Trained with negative log-likelihood losses corresponding to the object, location, and 
discrete attribute softmax classifiers
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Text to scene translation

Fuwen Tan, Song Feng & Vincente Ordonez (2018). Text2Scene: Generating compositional scenes from textual descriptions. 
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).
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• Text is first translated into a scene graph (= symbolic representation 
expressing the objects and their semantic/spatial relationships)

• The spatial layout is generated from the scene graph

• Use of a graph convolution network composed of several graph 
convolution layers to represent objects and their relationships

• Followed by steps of layout prediction and pixel prediction

Text to scene translation: integration of a scene graph
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Graph convolution network

• Graph convolution network:
• Input: graph with vectors of dimension 𝐷&X at each node and edge, it 

computes new vectors of dimension 𝐷.Y$ for each node and edge => 
graph convolution propagates information along edges of the graph

• Can be seen as a message passing algorithm where, e.g., the 
representation of a node is updated based on "messages" sent by 
neighboring nodes
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Graph convolution network

Given input vectors 𝑣&, 𝑣[ ∈ ℝ^_` for all objects 𝑜& ∈ 𝑂 and edges (𝑜&, 𝑟, 𝑜c) ∈ 𝐸, we 
compute output vectors for 𝑣&f, 𝑣cf ∈ ℝ ĝhi for all nodes and edges using three functions 
𝑔k, 𝑔l and 𝑔., which take as input the triple of vectors (𝑣&, 𝑣[, 𝑣c) for an edge and output 
new vectors for the subject 𝑜&, predicate 𝑟, and object 𝑜c, respectively 

Output:
• 𝑣[f = 𝑔l(𝑣&,𝑣[, 𝑣c)
• An object may participate in many 

relationships:
• 𝑣&f depends on all vectors 𝑣c for objects 

to which 𝑜& is connected via graph edges, 
as well as the vectors 𝑣[ for those edges

• 𝑉&k = 𝑔k(𝑣&,𝑣[, 𝑣c) ∶ (𝑜&, 𝑟, 𝑜c) ∈ 𝐸
• 𝑉&. = 𝑔.(𝑣c,𝑣[, 𝑣&) ∶ (𝑜c, 𝑟, 𝑜&) ∈ 𝐸
• 𝑣&f for object 𝑜& is then computed as 𝑣&f
= ℎ 𝑉&k ∪ 𝑉&. where ℎ is a symmetric 
function which pools an input set of 
vectors to a single output vector

Justin Johnson, Agrim Gupta & Li Fei-Fei (2018). Image generation from scene graphs. In Proceedings of the Conference on 
Computer Vision and Pattern Recognition (CVPR). 24



Text to scene translation: integration of a scene graph

Justin Johnson, Agrim Gupta & Li Fei-Fei (2018). Image generation from scene graphs. In Proceedings of the Conference on 
Computer Vision and Pattern Recognition (CVPR). 25



More details

• Scene graphs were manually created, but could be derived from dependency parse
• A generative adversarial network was trained end-to-end including several loss 

functions
• Interesting to mention is the box loss for layout prediction:

• Box loss: ℒq.r = ∑&t,X 𝑏& − w𝑏& ,which penalizes the 𝐿,difference between 
ground-truth 𝑏& and predicted box w𝑏&, where 𝑛 = number of objects in the graph

• Optimized over all 𝑁 training data

• Problem of semantic standards for object and relationship names in the scene 
graph

Text to scene translation: integration of a scene graph

Justin Johnson, Agrim Gupta & Li Fei-Fei (2018). Image generation from scene graphs. In Proceedings of the Conference on 
Computer Vision and Pattern Recognition (CVPR). 26



The LSTM encoder provides 
a representation 
(embedding) of each object 
mentioned in the input text

From this representation a bounding box of the object is 
predicted in the 2D space: 
The output of the box generator is a set of bounding boxes B 
= 𝐵,,… ,𝐵X where each bounding box 𝐵$ defines the location, 
size and category label of the 𝑡-th object

Text to scene translation

Seunghoon Hong, Dingdong Yang, Jongwook Choi (2018). Inferring semantic layout for hierarchical text-to-image 
synthesis. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).
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More details

• We denote the labeled bounding box of the 𝑡-th object as 𝐵$ = 𝐛$, 𝒍$ , where 𝐛$ = 𝑏$,r, 𝑏$,�, 𝑏$,�, 𝑏$,�
∈ ℝ� = the location and size of the bounding box, and 𝒍$ ∈ 0,1 ��, is a one-hot class label over 𝐿
categories; 𝐿 + 1 -th class as a special indicator for the end-of-sequence 

• Bounding box generator = auto-regressive (i.e., it uses prediction from a previous state to generate next 
step) decoder modeled by decomposing the joint conditional box probability as 𝑃 𝐁,:X 𝐬
= ∏$t,

X 𝑃 𝐵$ 𝐵,:$+,, 𝐬 where 𝐬 is the input text
• We first sample the class label 𝒍$ for the 𝑡-th object and then generate the box coordinates 𝐛$

conditioned on 𝒍$ , i.e., 𝑃 𝐵$ � = 𝑃 𝒍$, 𝐛$ � = 𝑃 𝒍$ � 𝑃 𝐛$ 𝒍$,�
• Training by minimizing the negative log-likelihood of ground-truth bounding boxes and their labels: 

ℒq.r = −𝜆�
1
𝑛�
$t,

X

𝒍$∗ log𝑃 𝒍$ − 𝜆q
1
𝑛�
$t,

X

log𝑃 𝐛$∗

optimized over all 𝑁 training data

Text to scene translation

Seunghoon Hong, Dingdong Yang, Jongwook Choi (2018). Inferring semantic layout for hierarchical text-to-image synthesis. 
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).
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Text to scene translation

• Qualitative evaluation of the full image generation process

Seunghoon Hong, Dingdong Yang, Jongwook Choi (2018). Inferring semantic layout for hierarchical text-to-image 
synthesis. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).
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Transformer for spatial language modeling

• Famous for language modeling: e.g., BERT: Bidirectional Encoder 
Representations from Transformers and variants 

• Increasingly popular for jointly modeling language and visual data: 
e.g., LXMERT, VilBERT, VLBERT, etc. for better understanding of language 
and visual data (e.g., in visual question answering, visual dialog) 

• Is this architecture also suited to model spatial language?

Jacob Devlin, Ming-Wei Chang, Kenton Lee & Kristina Toutanova. (2018). BERT: Pre-training of 
deep bidirectional transformers for language understanding. In Proceedings of the 2019 
Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language Technologies (pp. 4171-4186). ACL. 
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Spatial-Reasoning BERT

Gorjan Radevski, Guillem Collell, Marie-Francine Moens & Tinne Tuytelaars (2020). Decoding language spatial relations to 
2D spatial arrangements. EMNLP Findings.

Model is trained by minimizing the sum of the individual per-axis cross-entropy 
losses ℒr and ℒ� together with the orientation loss ℒ.[
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Spatial-Reasoning BERT

Gorjan Radevski, Guillem Collell, Marie-Francine Moens & Tinne Tuytelaars (2020). Decoding language spatial relations to 
2D spatial arrangements. EMNLP Findings.

Quantitative and qualitative evaluation
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Scene layout generation in 3D-space

• Task of object localization using natural language directly in 3D space
• Input is given text description
• Output: Predict position of referred object in the 3D scene

Dave Zhenyu Chen, Angel X. Chang & Matthias Niessner (2020). ScanRefer: 3D object localization in RGB-D 
scans using natural language. In Proceedings of the European Conference on Computer Vision (ECCV). 
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Map text to 3D

• Representations of organs mentioned in medical 
text is projected to location in 3D atlas of the 
human body

• Embeds medical text into a universal, small 
dimensional space corresponding to the human 
body that is easy to navigate and interpret

• The volume of each organ is characterized by a set 
of voxels in the atlas, which capture its position, 
size and shape

• The voxels of one organ can, in turn, be 
represented by a point cloud in 3D space, where 
each point represents the coordinate indices of one 
voxel

Dusan Grujicic, Gorjan Radevski, Tinne Tuytelaars & Matthew Blaschko (2020). Learning to ground medical text in a 3D 
human atlas. In Proceedings of the Conference on Computational Natural Language Learning (CoNLL). ACL.

Task: Grounding medical text in the
human body
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35

• BERT backbone
• Model input ーMedical text tokenized with WordPiece
• Model output ー [CLS] token representation projected into 3D

• Loss function: Enables reasoning about the semantic relatedness of medical text

Map text to 3D

Dusan Grujicic, Gorjan Radevski, Tinne Tuytelaars & Matthew Blaschko (2020). Learning to ground medical text in a 3D 
human atlas. In Proceedings of the Conference on Computational Natural Language Learning (CoNLL). ACL.
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Soft Organ Distance loss

• Not only grounding the medical article to the right organ 
but also to the appropriate location within the organ 
based on the other organs mentioned as context without 
any explicit annotations at that level of granularity

• Could be refined by considering spatial language

Map text to 3D

Dusan Grujicic, Gorjan Radevski, Tinne Tuytelaars & Matthew Blaschko (2020). Learning to ground medical text in a 3D 
human atlas. In Proceedings of the Conference on Computational Natural Language Learning (CoNLL). ACL.
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Control 3D with language

Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-Francine Moens & Aurelien Lucchi (2020). 
Convolutional Generation of Textured 3D Meshes. In Advances in Neural Information Processing 
Systems Volume 33.

• The goal is to gain more control in GAN 
based image generation

• Natural disentanglement of shape and 
color in the image generation process

• The methodology maps the 3D shapes 
in 2D space so that they are pose-
independent (i.e., the beak, tail, wings 
are always in the same location)

• This makes it easier for the attention 
mechanisms to map the language 
information to the visual space and 
control the image generation
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Challenge
• The task of visual grounding requires locating the most relevant region 

or object in an image, given a natural language query.

Application: Giving a command to your self-driving car

Thierry Deruyttere, Simon Vandenhende, Dusan Grujicic, Yu Liu, Luc Van Gool, Matthew Blaschko, Tinne Tuytelaars & Marie-
Francine Moens (2020). Commands 4 Autonomous Vehicles (C4AV) Workshop Summary. In Proceedings of the 16th European 
Conference on Computer Vision. 38



• Best results in terms of IoU  by using Stacked VLBert model

Application: Giving a command to your self-driving car

Thierry Deruyttere, Simon Vandenhende, Dusan Grujicic, Yu Liu, Luc Van Gool, Matthew Blaschko, Tinne Tuytelaars & Marie-
Francine Moens (2020). Commands 4 Autonomous Vehicles (C4AV) Workshop Summary. In Proceedings of the 16th European 
Conference on Computer Vision. 39



Reasoning in physical space

• The above approaches allow reasoning in the physical space (2D or 3D): is 
useful in processing human-machine communications: e.g., 

• Communications with robots and autonomous vehicles: inference of 
additional spatial information

• Still large potential for learning from video data coupled with language

• When to reason in the language space (use of spatial ontology) and when 
in the physical space is an interesting research question

• Both methods are transparent for humans and contribute to the 
explainability of the models
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Reasoning in representation space that mimics the human brain 

• Representations that generate the 
mappings of language to 2D or 3D spaces 
contain the spatial information in a 
dense, distributed form 

• Eventually quantitative spatial reasoning 
with these ??? 

• Inspired by the human brain?
• Possibly computations in non-Euclidean 

geometric spaces ???
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